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0 Preliminaries

Literature

These lecture notes combine material from several sources. Some topics in these lecture notes are
treated in all books listed below; for some, a particular book or selection of books is better suited.
In this case, this will be indicated in the corresponding chapter.
In particular, you might find it useful to also read up on the topics in the following books as well
as lecture notes (available online):

• Srednicki, Quantum Field Theory

• Ryder, Quantum Field Theory

• Gelis, Quantum Field Theory

• Schwartz, Quantum Field Theory and the Standard Model

• Peskin/Schröder, Quantum Field Theory

• Nastase, Quantum Field Theory

• Fradkin, Quantum Field Theory

• There are many other books on QFT and it is often a matter of personal taste, which one is
most useful.

• Lecture notes on QFT by D. Tong (Cambridge University), A. Hebecker (Heidelberg Univer-
sity), T. Weigand (from the QFT courses at Heidelberg University)

Many topics are treated to the greatest level of depth in the QFT books by Weinberg. However,
for a first encounter with a topic, the books are usually not useful, but rather become helpful later
on, when one has already learned about a topic and wants to come back to it to learn more about
it.
There is also the book “Quantum field theory in a nutshell” by Zee, which focuses more on some
conceptual aspects rather than technical points and it can be a useful addition to the above list of
literature.

Mini-exercises

The best way to learn quantum field theory is to do calculations yourself, and think and discuss
about concepts yourself. Therefore, each lecture has at least one “mini-exercise”, which you will
work on during the lecture. This gives you the opportunity to engage more actively with the
material and notice when you have questions. You will likely not always have time to finish the
mini-exercise during class. Therefore, solutions will not only be provided on the blackboard, but
are also available in the back of the lecture notes. They will be made available in the update of
the lectures notes that will be made online after each lecture.
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1 Introduction

1.1 Motivation: Why quantum field theory?

Quantum mechanics is a non-relativistic theory. This results in a question, namely:

Ñ What happens to systems in which quantum effects and relativistic effects are important?
There is a heuristic argument that points us towards how relativistic quantum physics dif-
fers from quantum mechanics. From the standard Heisenberg uncertainty principle, one can
motivate an uncertainty relation between energy E and time t, namely ∆E∆t ě ℏ

2 . In a
relativistic setting, we can combine this with E “ mc2, which we know from special relativity.
“ñ We expect that particle number is never fixed in a system, because, for short enough
time durations, energy is not constant, but fluctuates and these fluctuations in energy trans-
late into fluctuations in particle number. We call these fluctuations “virtual” particles.
“ñ We cannot work with a wavefunction for a fixed number of particles, as we did in quan-
tum mechanics. Instead, we need a formalism in which the particle number can change in a
system over time, and in which the presence of virtual particles is accounted for.

We can also see the incompatibility between special relativity and quantum mechanics in a
different way:

Ñ Special relativity requires that two measurements that are done at spacelike separation,
must be independent in order not to violate causality. In Quantum Mechanics, independence
of measurements is encoded in commuting operators. However, the notion that spacelike
separated operators commute is not naturally built into QM.

“ñ We need to adapt our formalism.

How should the new formalism look like?
To go beyond wavefunctions for fixed numbers of particles, we need a (mathematical) quantity
that is more fundamental than particles, i.e., particles should be a derived notion.
We take inspiration from electrodynamics, because electrodynamics can be formulated in a rela-
tivistic way. At the same time, we know from the photo-electric effect, that there are particles in
electrodynamics, namely photons. Thus, it is a useful guide to point us to the type of formalism
that we should develop. Electrodynamics is a field theory, i.e., the fundamental quantity is a field,
i.e., a quantity that takes on values at each spacetime point.
From experiments, we already know that photons (the corresponding particles) are derived from
the field, in fact, they correspond to (quantized) excitations of the field. This can, e.g., be seen
in laser experiments, in which the power incident on a screen is recorded. As the intensity of the
laser is lowered, the power arrives in discrete, “quantized packages”, the photons.
In order to be compatible with special relativity, we need to build a theory which has Lorentz
invariance built into it, just like the relativistic formulation of electrodynamics has.

What will this type of theory be able to describe?

• elementary particles and their interactions, in particular the Standard Model of particle
physics.
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• any setting in which particle number is not conserved, e.g., condensed-matter-systems in
which we are interested in effective (not fundamental) excitations, such as, e.g., phonons, or
Cooper-pairs in superconductivity.

• if the energy of the system is low enough, the formalism that we are developing is even
sufficient to understand the quantum properties of gravity.

Note: in our current understanding of cosmology, the origin of all structures in the universe
(galaxies, galaxy clusters . . . ) are quantum fluctuations of the fundamental fields in the early
universe. Ultimately, we thus owe our existence to the physics of QFT!

1.2 Why learning quantum field theory is hard

Quantum field theory is not an easy subject. This has several reasons. First, the quantities that we
are dealing with are often abstract and more difficult to develop an intuitive understanding of than,
for instance, systems in classical mechanics. Second, we need to develop an entirely new formalism
to describe quantum fields, in which we bring together classical field theory and quantum theory.
In other words, we are learning a (mathematical) language in which to describe the systems that
we are interested in, and, just like with any other new language, learning it can be hard and it
takes some time until the concepts start to feel familiar and intuitive.
However, you should not feel discouraged by this or think about giving up. Rather, if you have
questions and/or doubts, bring them up with the lecturer (either after the lecture, or by email
to eichhorn@thphys.uni-heidelberg.de) or to your tutor, or to the head tutor, Zois Gyftopolous
(gyftopolous@thphys.uni-heidelberg.de). The whole team of lecturer and tutors is here to support
you in learning and understanding quantum field theory!

1.3 Why learning quantum field theory is absolutely worth it

Quantum field theory provides the framework for the most advanced and deepest understanding of
fundamental physics that we have. Therefore, it is like a key with which we can unlock fascinating
insights into elementary particles and their properties. Thus, some of the highlights that await us
this term are:

• understanding how powerful symmetries are and how we can deduce properties of elementary
particles from an understanding of the Lorentz group and how we can deduce the existence
of the electromagnetic field from thinking about symmetries

• understanding were the Pauli principle for Spin-1/2-particles comes from

• understanding why antiparticles must exist in order for causality to not be violated

• understanding that the vacuum is not a boring state of “nothing”, but is a highly non-trivial
state which results in a force between conducting plates (“Casimir force”) or the scattering of
photons off each other (unlike in classical electrodynamics, in which the equations of motion
for the gauge field are linear and electromagnetic waves do not interact)

• and much more!
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1.4 Classical field theory

We have already emphasized the role and importance of symmetries, so we will spend some more
time developing the mathematics of symmetries, namely groups and their representations. First,
however, we need to establish some of the notions that form the basis of this course, namely fields
and their classical description.

A field takes a value at each spacetime point. Examples that you may already know include

• the E- and B-field, Epx⃗, tq, Bpx⃗, tq, which are 3-vectors.

• the density in hydrodynamics, ρpx⃗, tq, which is just a one-component function.

• the gauge field Aµpx⃗, tq in electrodynamics, which is a 4-vector.

To describe their dynamics, we start from an action S, which is a functional, i.e., its argument is
a function (and it maps to the real numbers).
For instance, in the relativistic way of writing electrodynamics, we have

SrAs “
1
4

ż

d4xFµνF
µν , (1)

“

ż

d4xLED, Fµν “ BµAν ´ BνAµ.

We denote functionals with square brackets around their arguments, which are functions. LED is
the Lagrange density. It is not a functional, because it does not depend on the full function (in
this case, the field at all spacetime points), but is just a function of the spacetime-coordinates,
through its dependence on the field at a point.
To establish some of the key notions, we will use a scalar field, conventionally denoted by ϕpx⃗, tq.
An example for scalar fields relevant in nature is the Higgs field in the Standard Model; hypo-
thetical scalar fields include the inflaton field (that drives the (conjectured) inflationary phase in
the early universe), and proposals for dark matter (e.g., the axion, which is, to be more precise, a
pseudoscalar). Scalars that can be collective degrees of freedom also play a role in many condensed-
matter systems, starting from the Ising model.
The Lagrange density L depends on the field ϕpx⃗, tq and its derivatives, Bµϕpx⃗, tq, BµBνϕpx⃗, tq

. . . and is a priori completely arbitrary. We will make two assumptions:

• the Lagrange density is local, i.e., it depends on fields and their derivatives at one point and
it only depends on a finite number of derivatives. (We call this local, because a derivative
always compares a field at a point to its (infinitesimally removed) neighboring point. An
infinitely high power of derivatives thus involves fields a finite distance apart.)
This has two motivations: First, observationally, local interactions seem to describe nature
very well; e.g., in the LHC detectors, one can see that particles interact locally. Second,
non-local interaction may get into conflict with causality, because non-localities may mean
interactions at spacelike distances.

• We assume that the Lagrange density does not have higher than second derivatives in time.
The reason is Ostrogradsky’s theorem, which is a theorem in classical mechanics and states
that, (under a non-degeneracy condition), a Hamiltonian that contains higher-than-second-
order time derivatives is unbounded from below. This may- but need not!- make the the-
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ory dynamically unstable. Because this theorem implicitly underlies the formulation of La-
grangians in many settings (classical mechanics, classical field theory, quantum field theory),
we will take a closer look at it in the exercises.1

The Lagrangian
L “

ż

d3xL, (2)

is the spatial integral of the Lagrange density. We will often work with L, because it makes the
equal treatment of space and time, that we want in a relativistic theory, manifest. It is often called
“the Lagrangian” in a slight abuse of naming conventions.
L consists of two parts, a kinetic part, T , that depends on derivatives, and a potential, V ,

L “ T ´ V. (3)

We will often focus on
T “

1
2BµϕBµϕ, (4)

and
V “

1
2m

2ϕ2 ` λϕ4, (5)

where in V we assumed that we can Taylor-expand V pϕq around a minimum ϕ0 and we can set
ϕ0 “ 0 and V pϕ0q “ 0 without loss of generality. We further assume a symmetry ϕ Ñ ´ϕ, so
that there is no ϕ3 present, which would render V pϕq unbounded from below. We call m the
mass, because we will see that the equations of motion imply p2 “ m2 for the square of the
four-momentum, if the term m2ϕ2 is present in the Lagrangian. The quartic term, λϕ4 leads to
non-linear equations of motion, i.e., it describes interactions of the field (and the corresponding
particles) with itself. The strength of these interactions is parameterized by the coupling λ. In the
next few lectures, we focus on just the mass term.
Our choice of T requires a bit more justification: The kinetic part describes how the field changes
in space and time, thus it must contain a derivative, and Bµϕ is the building block to use. In
order to have a Lorentz-invariant expression, we must contract the open index and the only other
4-vector we have is another derivative. Thus, up to rescalings of the term, we have a unique lowest
order action in ϕ

S “

ż

d4x

ˆ

1
2Bµϕ Bνϕ η

µν ´
m2

2 ϕ2
˙

, (6)

where ηµν “ diagp1,´1,´1,´1q in our conventions, which most QFT books use. Many GR books
use ηµν “ diagp´1, 1, 1, 1q. The overall sign is pure convention; the difference in signs between the
time part and the spatial part is physics.

Mini-Exercise 1. We made the statement that we can set a constant and a linear term in
L to zero without loss of generality. For the constant term, this is because the equations of
motion follow from minimizing the action and the field value that minimizes S does not depend
on whether or not there is a constant shift in S.

1You have probably encountered or will encounter many examples where the Lagrangian does not have higher
than second order time derivatives. Electrodynamics is one example, General Relativity another, and classical
mechanics is full of examples. Note however that there are subtleties and there are counterexamples to the intuition
that a Hamiltonian that is unbounded from below leads to instabilities.
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For the linear term, we can always remove it by a change of our field variable (which you can
think of as analogous to a change in coordinates in class. mech.)
Show this! Start with

L “
1
2BµϕBµϕ´ Cϕ´

1
2m

2ϕ2. (7)

Define φ “ ϕ` γ. What is the choice of γ, such that

L “
1
2BµφBµφ´

1
2m

2φ2 ` const ? (8)

Solution.

L “
1
2BµφBµφ´ Cpφ´ γq ´

1
2m

2pφ´ γq2

“
1
2BµφBµφ´ Cφ` Cγ ´

1
2m

2φ2 `m2φγ ´
1
2m

2γ2

Define γ “ C
m2 :

Ñ
1
2BµφBµφ`

C2

m2 ´
1
2m

2φ2 ´
1
2m

2 C
2

m2 .

The equations of motion follow from extremizing the action, i.e., we perform a variation of the
action (i.e., a variation of the field, ϕ Ñ ϕ`δϕ, by some arbitrary amount δϕ). We set the variation
of the action to zero, just like, when we are searching for the minimum of a function, we are setting
its first derivative (analogous to the variation of the argument of the function) to zero:

0 “ δS “ δ

ż

d4x

ˆ

1
2BµϕBµϕ´

1
2m

2ϕ2
˙

“

ż

d4x
`

pBµϕqηµνpBνδϕq ´m2ϕδϕ
˘

“

ż

d4x
`

´pBνBµϕqηµνδϕ´m2ϕδϕ
˘

“

ż

d4x
`

´pBνBµϕqηµν ´m2ϕ
˘

δϕ, (9)

where in the second-to-last step we used partial integration and where we assume that δϕ “ 0 at
x Ñ ˘8. Because δϕ is an arbitrary variation, to satisfy Eq. (9), the factor ´BνBνϕη

µν ´ m2ϕ

must be zero.
This is the Klein-Gordon equation,

B2ϕ`m2ϕ “ 0, (10)

with B2 “ BµBνη
µν . The Klein-Gordon equation is a relativistic, massive wave equation.

For the Lagrangian, δS “ 0 translates into the Euler-Lagrange equations

BL
Bϕ

´ Bµ

ˆ

BL
BBµϕ

˙

“ 0. (11)

The solutions to the equations of motion are spanned by plane waves,

ϕpxq “ ϕ0 cospkxq, passuming ϕpxq “ ϕp´xqq (12)

with the shorthand kx “ kµx
µ and the relativistic, massive dispersion-relation kµk

µ “ k2 “ m2.
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Later on, a starting point for one quantization scheme (path-integral quantization) will be the
action, but the starting point for another quantization scheme (canonical quantization) will be the
Hamiltonian.
Just as in classical mechanics, where we define p “ BL

B 9q , the canonically conjugate momentum,
and Hpp, qq “ p 9q ´ L, in quantum field theory we define πpx⃗q, the canonically conjugate field.
(Note: it is the canonically conjugate field to ϕ, but has nothing to do with the momentum of the
particles that we will describe. It is sometimes called the (canonically conjugate) momentum field,
because it arises in the generalization of the Hamiltonian formalism to QFT and it generalizes the
momentum of a particle, which is the canonically conjugate variable to the position.) Its definition
is

πpx⃗q “
δL

δ 9ϕpx⃗q
, (13)

which is a functional derivative, i.e., a derivative with respect to a function. Just like Bx
Bx “ 1, we

have
δϕpx⃗q

δϕpy⃗q
“ δ3px⃗´ y⃗q. (14)

Thus, for the Lagrangian in Eq. (6), we obtain

πpx⃗q “
δ

δ 9ϕpx⃗q

ż

d3y

¨

˚

˚

˚

˝

1
2

9ϕ2 ´
1
2

´

∇⃗ϕ
¯2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
BµϕBµϕ

´
1
2m

2ϕ2

˛

‹

‹

‹

‚

“

ż

d3y
´

9ϕ δ3px⃗´ y⃗q

¯

“ 9ϕpx⃗q. (15)

Thus, to calculate the Hamiltonian, we can use that 9ϕ can be substituted by π. We obtain the
Hamiltonian of the system as

H “

ˆ
ż

d3xπ 9ϕ

˙

´ L

“

ż

d3x

ˆ

π2 ´

ˆ

π2

2 ´
1
2

´

∇⃗ϕ
¯2

´
m2

2 ϕ2
˙˙

“
1
2

ż

d3x

¨

˚

˚

˝

π2 `

´

∇⃗ϕ
¯2

`m2ϕ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2H

˛

‹

‹

‚

“

ż

d3xH, (16)

where we defined the Hamiltonian density H.
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2 The importance and the mathematics of symmetries

Useful literature for this chapter is the following: There are books on group theory in physics
and more specifically particle physics, e.g., “Group theory in physics” by Wu-Ki Tung and “Lie
algebras in particle physics” by Howard Georgi.
QFT books also cover discussions of symmetry groups, for instance: Schwartz, chapter 2, covers
the basics of Lorentz transformations, and group theory basics for the Lorentz group are discussed
in 10.1. The Lorentz group and its Lie algebra generators are also discussed in Srednicki, chapter
2. Gelis (chapter 7.1) summarizes Lie groups and Lie algebras.
Symmetries are one of the most important foundational elements in QFT. This becomes obvious
from many examples:

i) In particle physics, the various mesons and baryons are organized into sets, e.g., the eight
lightest mesons are grouped into the meson octet according to the “eightfold way” which is
based on a so-called “SUp3q flavor symmetry”. Historically, this type of organization into
sets according to symmetries was central in predicting new particles.

ii) You might have heard that the Standard Model is an SUp3q ˆ SUp2q ˆ Up1q gauge theory.
Specifying this symmetry already fixes a large part of the Standard Model particle content
and the allowed interactions between particles.

iii) In condensed matter, phase transitions are associated with spontaneous breaking of symme-
tries. For instance, in a ferromagnet, at high enough temperature, there is no macroscopic
magnetization, which means that there is full rotational symmetry for each of the microscopic
spin vectors. At low temperature, in the magnetized phase, rotational symmetry is broken,
because the macroscopic magnetization spontaneously selects one spatial direction. More
generally, by knowing the symmetries that the degrees of freedom in a condensed-matter
system obey, we can already figure out which phases and phase transitions there could be.

iv) Lorentz symmetry (or its generalization, Poincaré symmetry, which adds translations (in
space and in time)) determine much of the properties of elementary particles and their
interactions and much of the mathematical structure of QFT.
For instance, the fact that we characterize elementary particles by their mass and their spin
is a direct consequence (as we will work out) follows from considering the Poincaré group.

v) . . .

This motivates us to dive into the mathematics of symmetries, because this appears to be the
language in which large parts of nature can be described.

2.1 Symmetries are described by groups

It turns out that there exists a mathematical structure that is exactly adapted to formalizing
symmetries, and that is a group.
Definition of a group:

A group G is a set of elements Gi P G, together with a “multiplication” ¨ , such that

Gi ¨Gj “ Gk, Gk P G @Gi, Gj P G. (17)
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This means that we can combine two elements of the group by the multiplication and
we obtain another element of the group. The multiplication law satisfies

• associativity

pGi ¨Gjq ¨Gk “ Gi ¨ pGj ¨Gkq @Gi, Gj , Gk P G. (18)

• D identity element E, s.t.

Gi ¨ E P G @Gi and E P G. (19)

• inverse element
@Gi P G D G´1

i P G, s.t. Gi ¨G´1
i “ E. (20)

Note that the identity element is unique, as is the inverse for each element.
Let’s parse this definition and the intuition behind the various requirements in physics language,
using rotations as an example and thinking of a spherically symmetric system:

• Two rotations can be performed consecutively, yielding a third rotation (about a different
axis). This is the multiplication law which allows us to combine group elements into new
group elements.

• When three rotations are performed, either the 1st and 2nd or 2nd and 3rd can be combined,
such that the consecutive execution of the three of them is equal in any of the two combina-
tions. (Note that we must not reverse the order of the three rotations, because the group is
not commutative.)

• There is an identity element, namely rotation by 0˝ (or no rotation).

• For each rotation, we can reverse the sense of rotation to rotate back, such that the combi-
nation of rotation and inverse rotation yields no rotation.

You may already know that rotations can be represented by matrices, such that, e.g., the identity
is the unit matrix and the inverse element is the inverse matrix.

We will encounter two mathematically distinct sets of groups that encode symmetries in QFT:

1) discrete groups (with a finite set of elements), for instance reflections about a plane (has
three elements: the reflection, its inverse, and the identity).

2) continuous groups, which are Lie groups. The rotation group is an example. It is continuous,
because it has infinitely many group elements (rotations by different angles) and “neighbor-
ing” rotations only differ infinitesimally.

We will also encounter three physically distinct types of groups2

2There is a theorem, the Coleman-Mandula theorem, that says that, under some assumptions, there are no
symmetry groups that mix spacetime symmetry transformations with internal symmetry transformations. The
realization that, by violating the assumptions, one can get around this theorem, and is then required to introduce
so-called “super-partners” led to the development of supersymmetry, which we will not treat in this course, but
which is a very interesting mathematical developments worth understanding. In nature, supersymmetry is realized
in some low-dimensional settings in condensed-matter theory, but does not appear to be realized in particle physics.
It is, however, instrumental in one approach to quantum gravity, namely in string theory.
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a) spacetime symmetry groups, which can either be continuous (like the Lorentz group, SOp1, 3q),
or discrete (like time-reversal symmetry which maps the time t to ´t)

b) internal symmetry groups, where “internal” here means that the symmetry does not act on
space and time (like, e.g. the Lorentz group), but only on the field. These come in two
different versions:

i) global internal symmetries (like the Z2-symmetry ϕ Ñ ´ϕ that we imposed on scalar
field theory to ensure that there is no ϕ3 term in the scalar potential, or the SOp3q

symmetry that is imposed on the scalar field in the Heisenberg model that describes
phase transitions in certain materials).
Global means that the symmetry transformation is the same for the field at all spacetime
points.

ii) local internal symmetries (like the Up1q gauge symmetry of electromagnetism).
Local here means that the symmetry transformation can be different at different space-
time points (even if it doesn’t act on the spacetime itself).

Some of these notions may seem a little abstract at the moment. They will become clearer as we
develop our understanding of group theory and come up with examples.
The most relevant groups for us will be Lie Groups.

2.2 Lie groups

These are groups in which the group elements form not just a set, but a differentiable manifold
(which is a collection of points such that each point has an open neighborhood that is equivalent
to Rn and which can be covered by coordinate charts that overlap partially).
This means that the group is continuous, such that you can always find a group element infinitesi-
mally close to any given element. Intuitively, we can see directly that the group of rotations should
be such a continuous group, because we can always rotate by an arbitrarily small amount and thus
find rotations which are only infinitesimally different from each other.

12



everything inbetween is also 
an element of the group

⑳
Examples:

• Up1q is the group of all unitary 1 ˆ 1 matrices, i.e.,

G “ eiα, α P C. (21)

The corresponding manifold is the circle (of radius 1) in the complex plane.
As a global symmetry, the phase α of the transformation does not depend on the spacetime
point. As a local symmetry, α is upgraded to a function αpxµq. We will explore the con-
sequences of this soon. In fact, this group determines the properties of photons and their
interactions with charged particles.

• SUp2q is the group of 2ˆ2 unitary matrices with determinant 1. The corresponding manifold
is the 3-sphere, S3.
To see this, we write

U :U “ 1 “ñ U “

˜

a b

´b˚ a˚

¸

with |a|
2

` |b|
2

“ 1 for a, b P C (22)

(Check:

U : “

˜

a˚ ´b

b˚ a

¸

and U :U “

˜

|a|
2

` |b|
2

(((((a˚b´ ba˚

(((((b˚a´ ab˚ |a|
2

` |b|
2

¸

“ 1q (23)

Now we write both complex numbers in terms of real and imaginary part,

a “ x` iy, b “ z ` it (24)

“ñ |a|
2

` |b|
2

“ |x|
2

` |y|
2

` |z|
2

` |t|
2

“ 1 parametrizes the group manifold SUp2q, where
x, y, z, t P R.
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This is the equation defining a unit 3-dimensional sphere embedded in 4-dimensional space,
i.e., S3.
SU(2) is the symmetry group determining the properties of the weak gauge bosons (W`, W´

and Z) and their interactions with the fermions in the Standard Model.

With a Lie group comes a Lie algebra g, LiepGq “ g. Knowing about the Lie algebra is useful,
because all properties of the Lie group follow from knowing the so-called generators of the Lie
algebra and their commutation relations.
A Lie algebra is a vector space g with a bilinear, antisymmetric map:

g ˆ g Ñ g, pa, bq ÞÑ ra, bs “ ´rb, as (25)

(that we suggestively write in the same notation that we use for the commutator) that satisfies
the Jacobi identity

ra, rb, css ` rb, rc, ass ` rc, ra, bss “ 0. (26)

We will only need matrix groups and matrix algebras. For matrix Lie groups, the relation between
group and algebra is given through the exponential map: For ai P g,

Gi “ exppaiq, (27)

(defined through its Taylor series) is a group element. Each group element (in the so-called identity
component of G) can be written in such a way. For 0 P g, 1 “ expp0q P G.
We can find a basis in g and these elements of the Lie algebra are called the generators. Having
this basis of generators, we can construct every group element through the exponential map.
Example: Rotation group SOp3q

SOp3q is the group of special orthogonal 3x3 matrices, i.e., matrices which are orthogonal, so
Rot RotJ

“ 1, where RotJ denotes the transposed matrix, and special, i.e., their determinant is
+1. They describe rotations, because we can check that the requirement that a rotation leaves the
length of a vector invariant requires Rot RotJ

“ 1. To check this, consider a spatial vector, with
components xi. Under a rotation, it is mapped to

xi Ñ xi
1

“ Rotik xk. (28)

We require that its length stays invariant, so that

xi xj δij “ xi
1

xj
1

δij “ Rotik Rotjl x
k xlδij . (29)

Thus, 1 “ Rotik Rotjl δij “ RotT Rot. This is in particular realized by matrices of the form

Rotx “

¨

˚

˝

1 0 0
0 cos θ ´ sin θ
0 sin θ cos θ

˛

‹

‚

, (30)

and analogously for rotations about the y and the z-axis.
Claim: LiepGq “ tantisymmetric 3 ˆ 3 matricesu
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Mini-Exercise 2. Check that Rot RotJ
“ 1, as required for Rot P SOp3q, is realized by

Rot “ exppT q, if Tij “ ´Tji.

Solution.
R RJ

“ exppT q expp´T q “ 1,

because
RJ

“ pexppT qq
J

“ expTJ “ expp´T q.

Let’s see how we can reconstruct the group elements, i.e., the Rot matrices, from the Lie algebra
generators. An antisymmetric 3 ˆ 3 matrix with real components (so that Rot is real), has 3
independent components, so we have three basis elements

Tx “

¨

˚

˝

0 0 0
0 0 ´1
0 1 0

˛

‹

‚

, (31)

and analogously for the other two generators of the Lie algebra. Now we can write a rotation
about the x-axis as

Rotx “ exp pθ Txq “ 1 ` θ

¨

˚

˝

0 0 0
0 0 ´1
0 1 0

˛

‹

‚

` Opθ2q “

¨

˚

˝

1 0 0
0 1 ´θ

0 θ 1

˛

‹

‚

` Opθ2q, (32)

which is clearly the infinitesimal version of the rotation matrix given above.

What will be crucial in our construction of QFT is the notion of representations of groups and
algebras. For instance, we will construct the spin-0, spin-1/2 and spin-1 representations of the
Lorentz group to describe the Higgs field, the electron and the photon in the Standard Model, or
various excitations in condensed-matter systems.
Intuitively, a representation is a set of objects which satisfy the same multiplication rules as the
abstract group elements, i.e., they are often matrices, for which the multiplication satisfies the
combination rules that the group elements satisfy.
More formally, a representation R of a group is a map G R

Ñ́ GLpVq (where GLpVq are the general
linear transformations on a vector space), such that Rp1q “ 1 and Rpghq “ RpgqRphq. (In other
words, R is a group homomorphism from G to GLpVq.) Loosely speaking, we find matrices which
represent the symmetry operators.
Examples: representations of the rotation group SOp3q

• trivial representation: on scalar quantities RpRotq “ 1, no rotation.

• vector representation: on a vector, V “ R3, RpRotq “ Rot. This is the so-called fundamental
representation, in which the rotation matrices take the form that defines the group, namely
3x3 orthogonal matrices with unit determinant.

• tensor representation: on a tensor, V “ R3 ˆ R3, RpRotq “ Rot b Rot, because Tij ÞÑ

R k
i R

l
j Tkl.
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Similarly, Lie algebras have representations and from a representation of a Lie algebra, we can
always construct the associated representation of the group (by using the exponential map). Thus,
we will sometimes be a bit sloppy and switch back and forth between algebra and group.
Let’s make all of this more concrete by looking at the Lorentz and the Poincaré groups as our exam-
ples. These are our most important examples, because these encode the fundamental symmetries
of spacetime, on which we are constructing our quantum field theory.

2.3 Lorentz transformations and the Lorentz group

Lorentz transformations, abstractly denoted by Λ, act on 4-vectors that denote the spacetime
location of an event 3, i.e.,

xµ “

˜

t

x⃗

¸

(33)

as
x1µ “ Λµνxν , (34)

where the defining equation for a Lorentz transformation is

ΛµρηµνΛνσ “ ησρ . (35)

This equation says that the Minkowski metric is left invariant under Lorentz transformations, which
implies that scalar products built with this metric are invariant under Lorentz transformations.
Because η is the Minkowski metric, the Lorentz group is SOp3, 1q, and contains boosts and spatial
rotations, instead of being SOp4q, the group of rotations of 4-dimensional space (which Eq. (35)
would define for ηµν Ñ δµν).
From Eq. (35), we have that Λ µ

ν “ ηµκηλνΛλκ is the inverse Lorentz transformation. This is
easiest to see by writing Eq. (35) in matrix notation, where it reads

ΛT ηΛ “ η, (36)

where the first Λ is transposed, in order for the index contraction in Eq. (35) to match index
contraction for matrix multiplication. From Eq. (36), we then have that

Λ´1 “ η´1ΛT η, (37)

which, in index notation, becomes

`

Λ´1˘µ
ν

“ ηµκ
`

ΛT
˘ λ

κ
ηλν “ ηµκΛλκηλν “ Λ µ

ν . (38)

When acting on 4-vectors, Λ are in their fundamental representation, which you can think of as
the representation that is used to define the group. How is the associated Lie algebra sop3, 1q

characterized?
We use that we can expand the exponential map to first order in the Lie algebra elements, if we
consider an infinitesimal transformation. For the fundamental representation

Λµν “ δµν ` ωµν ` Opω2q (39)
3Note that we use units in which c “ 1.
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for an infinitesimal transformation. Eq. (35) then implies a property of the ω’s:

Mini-Exercise 3. What holds for ωµν , such that (35) holds?

Solution.

`

δµρ ` ωµρ
˘

ηµνpδνσ ` ωνσq
!

“ ησρ

ηρσ ` ωσρ ` ωρσ ` Opω2q “ ησρ “ñ ωρσ “ ´ωσρ.

It holds that
ωµν “ ´ωνµ, (40)

i.e., ωµν is an antisymmetric 4 ˆ 4 matrix and therefore has 6 independent components that can
be nonzero. Depending on which components we choose to be nonzero, we obtain a different group
element of the Lorentz group.
Let us consider an example: We choose ω12 “ ´ω21 “ θ and set all other components of ω to zero.
Note that we have to be careful with the upper and lower indices on ω, so there will be an ηµν

that will make an appearance below. We obtain that

Λµν “ δµν ` ωµρηρν

“ 1 `

¨

˚

˚

˚

˚

˝

0 0 0 0
0 0 ´θ 0
0 θ 0 0
0 0 0 0

˛

‹

‹

‹

‹

‚

. (41)

We observe that this generates nothing but a (infinitesimal) rotation of the four-vector xµ about
the z-axis by an angle θ. We also note that the contraction ωµρηρν essentially flips the sign, i.e.,
ω1

2 “ ´ω12 and similarly ω2
1 “ ´ω21.

Similarly, if we choose ω01 “ ´ω10 “ θ, we obtain

Λµν “ 1 `

¨

˚

˚

˚

˚

˝

0 θ 0 0
θ 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‹

‹

‚

, (42)

which we can recognize as an infinitesimal boost along the x-axis, with θ being the rapidity,
tanh θ “ v{c. In this case, we have used that ω0

1 “ ω01η11 “ ´ω01 and ω1
0 “ ω10η00 “ ´ω10.

These examples help us to see that the six entries in ωµν which can be nonzero, select, which
among the six possible “basis” transformations (3 rotations along the 3 spatial axis, and 3 boosts
along these axis), can be performed and by which amount the physical system is rotated and/or
boosted. If we choose more than one component of ωµν to be non-zero, we get the corresponding
combination of these “basis” transformations.
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For a general representation UpΛq of the Lorentz transformation Λ, we have that

Up1 ` ωq “ 1 `
i

2ωµνM
µν ` Opω2q. (43)

In this expression, the ωµν still selects, which transformation is performed and determines the
“amount” of the transformation, but the “basis transformations” are now encoded in the Mµν .
The Mµν are called the generators of the Lorentz group, and there are six of them, representing
the three independent rotations and three independent boosts. We have that

J i “
1
2ϵ
i
jkM

jk generates rotations

Ki “ M i0 generates boosts,

where ϵijk is the Levi-Civita symbol, which is fully antisymmetric under permutations of its indices
and ϵ123 “ 1. Thus, M12, M13 andM23 generate rotations (along the z-, y- and x-axis, respectively)
and M01, M02 and M03 generate boosts along the x-axis, y-axis and z-axis, respectively.
A Lorentz transformation can act on many different objects, not just on four-vectors. In particular,
we will later in the course encounter spinors, which are objects that have spinor indices. These are
indices, i.e., a spinor is a collection of functions, but they are not spacetime indices. Therefore,
to have a Lorentz transformation act on a spinor, the Mµν need to carry the appropriate indices,
i.e., each of the six Mµν ’s, such as M01, M12 etc., must be a matrix with indices in the space that
it acts on.
This is somewhat abstract at this moment, so in order to make it less abstract, we consider the
case in which the Lorentz transformation acts on a four-vector. We already know that we can
write this in the form of Eq. (39), but now we want to understand how to write it in the form
Eq. (43), in which the generators appear explicitly. In fact, for the fundamental representation of
the Lorentz group, we have that

pMµνqκλ “ ´i pηµκηνλ ´ ηνκηµλq . (44)

By plugging this into Eq. (43), we get back Eq. (39).
While it seems unnecessarily complicated to introduce the M ’s for the action on 4-vectors, the
main point about Eq. (43) is that it is general; it describes the action of a Lorentz transformation
on any object.
The defining property of the generators of the Lorentz group is that they satisfy a commutation re-
lation. The abstract definition of the Lie algebra of the Lorentz group is through this commutation
relation:
The Lie algebra of the Lorentz group SOp3, 1q, is defined by the commutator relation of its gener-
ators, which is

rMµν ,Mρσs “ ipηµρMνσ ´ ηνρMµσq ´ ipηµσMνρ ´ ηνσMµρq. (45)

You will derive this commutation relation in the exercises. You can think of the Lorentz group
as being defined by this commutation relation. When we talk about different elementary particles
and different fields, they all arise from thinking about different representations of the Lorentz
group, i.e., many properties of elementary particles follow from this commutation relation above.
At this stage, this is still a rather abstract notion, but over the course of this course, we will see
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the commutation relation Eq. (45) “unfold its power”.

2.4 Poincaré group and why we classify particles by their mass and spin

We classify elementary particles by their mass and spin, plus quantum numbers associated to
internal symmetries. For instance, we describe the electron as a particles with rest-mass 511 keV
and spin-1/2 (and electric charge ´1). Why do we do so? Is it just a conventional choice and
we could be using some completely different characteristics? The answer is no. There is a deep
mathematical reason and it has to do with the structure of the Poincaré-group - a generalization
of the Lorentz group - and its so-called Casimir-operators.
The Poincaré group is an extension of the Lorentz group which, in addition to boosts and rotations,
contains translations, under which xµ ÞÑ xµ ` aµ. A transformation by an element of the Poincaré
group can be written as xµ ÞÑ Λµνxν ` aµ.
This is the full symmetry that 3+1-dimensional Minkowski spacetime enjoys.
An infinitesimal translation in a general representation can be written as

Upaq “ 1 ` iaµP
µ, (46)

where Pµ is the generator of translations. By Noethers theorem, Pµ will be identified as the
4-momentum in the corresponding representation. Its commutation relations with the other gen-
erators of the Poincaré group are

rPµ,Mρσs “ ipηµσP ρ ´ ηµρPσq (47)

rPµ, P νs “ 0. (48)

Now let us consider some state of n particles, which transforms under actions of the Poincaré
group. Under such transformations, its properties, such as its 4-momentum, change.
However, the Poincaré group has two Casimir invariants. These are (in the simplest case) quadratic
combinations of generators, which commute with all other generators. Therefore, their eigenvalues
are unchanged under the action of group elements and they provide invariant characterizations of
particles.
P 2 “ PµP

µ is the first Casimir invariant and W 2 “ WµW
µ, with Wµ “ ´ 1

2ϵµνρσM
νρPσ the

Pauli-Lubanski-pseudovector, is the second.

Mini-Exercise 4. Show that P 2 commutes with all generators of the Poincaré group.

Solution.

rP 2,Mµνs “ rP ρPρ,Mµνs

“ P ρrPρ,Mµνs ` rP ρ,MµνsPρ

“ P ρpiηρνPν ´ iηρµPνq ` piηρνPµ ´ iηρµPνqP ρ

“ ipPνPµ ´ PµPν ` PµPν ´ PνPµq

“ 0.

P 2 acting on a state with some 4-momentum yields the eigenvalue m2, i.e., because P 2 is a Casimir
operator of the Poincaré group, we label elementary particles by their rest mass.
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But what is the physical meaning of W 2?

W 2 “ WµW
µ “

1
4ϵµνρσM

νρPσϵµχλτM
χλP τ . (49)

Let’s consider this in a massive particles rest frame (massless particles are a separate case and we
will get to them later).
Then P Ñ pm, 0⃗q and W 0 “ 0. This holds, because ϵ is totally antisymmetric and because the
only non-zero component of P is P 0.

W i “
1
2ϵ
i
µν0M

µνP 0, (50)

here µ, ν must be spatial indices, but ­“ i. Therefore, ϵijk0 “ ϵijk, the 3d Levi-Civita symbol.
Thus,

W i “ J iP 0 “ mJ i “ñ W 2 “ ´m2J⃗ ¨ J⃗ . (51)

Now we need to interpret which angular momentum it is that shows up here. Which angular
momentum does an elementary particle have? Intrinsic angular momentum, i.e., spin. You might
remember from QM, that the eigenvalues of J⃗2 are sps` 1q, with s the spin.
“ñ Because W 2 is the 2nd Casimir operator of the Poincaré group, we label massive elementary
particles by their spin.

We have thus come to our first concrete result from our more abstract consideration of group
theory:
We have learned that there is a reason why we label elementary particles by mass and spin. This
is not an arbitrary choice, but a direct consequence of the fundamental symmetry-structure of
Minkowski spacetime and the properties of the underlying Poincaré group.

Next, we may wonder, what spin values4 are allowed? Can we have elementary particles with spin
0? spin 1{2? Spin 1? What about non-half-integers? Is there a particle with spin 2{3? or spin M?
To figure this out, we will classify the representations of the Lorentz group. This will determine
what type of fields we will focus on for the rest of the course.5 Generally, for a field with a
general Lorentz index A (could be a 4-vector index, or two 4-vector indices, such that the field is
a tensor, but we’ll also encounter spinor indices, which label the components of a spinor, but are
not spacetime indices), ϕapxq, we have

ϕ1
apxq “ L b

a pΛqϕbpΛ´1xq. (52)
4All in units of ℏ, which we set to 1.
5In the current discussion, we are switching back and forth between considering particles and fields. In this, we

are already using a result that we will see a little later in the course, namely that elementary particles show up as
excitations of fields. Therefore, it is to some extent equivalent to talk about particles or about the associated fields,
because the properties of the particles follow from the properties of the fields. However, let us highlight that there
is a difference when it comes to representations of the Poincaré group: fields transform in the finite-dimensional
representations of the group, i.e., they are constructed from a finite set of components. In contrast, particles
transform in the infinite-dimensional representation of the Poincaré group. Physically, this is, loosely speaking
because if you have a particle with some four-momentum pµ, then there are infinitely many other four-momenta pµ1

that are related to pµ by a boost. The choice of an infinite-dimensional representation is also necessary, because no
finite-dimensional representation is unitary, and we would like to have probabilities (or scalar products of a state
with itself) to be preserved under Poincaré transformations. Therefore, the representation that a field transforms in
is not the same one as the particles that it gives rise to transform in. However, for our purposes at the present, we
do not yet need to know this, as we will now simply focus on the representations that the fields can transform in.
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The matrices L b
a pΛq form a representation of the Lorentz group, i.e.,

L b
a p1 ` ωq “ δ b

a `
i

2ωµνpMµνq b
a (53)

where pMµνq b
a are representation matrices of the sop3, 1q Lie algebra, so that

rMµν ,Mρσs “ ipηµρMνσ ´ ηνρMµσq ´ ipηµσMνρ ´ ηνσMµρq. (54)

To understand which spins elementary particles can have, we must find all possible (finite-dimensional)
matrices Mµν

ab that obey these commutation relations, in order to find the possible fields that we
can write down. This sounds like a challenging problem, but it turns out that we are lucky if we
know something about the representation of the Lie algebra SUp2q 6.
From QM, we know that rJi, Jjs “ iϵijkJk, which is the SUp2q Lie algebra, is satisfied by sets of 3
hermitian matrices of size p2j ` 1q ˆ p2j ` 1q, where the eigenvalues of J3 are ´j,´j ` 1, . . . ,`j.
(If you would like a “refresher” on this, a good place to read up on it is, e.g., Sakurai “Modern
Quantum Mechanics”.)

Our luck lies in the fact that upon introducing

Ni “
1
2 pJi ´ iKiq premember : Ji “

1
2ϵijkMjk and Ki “ Mi0q (55)

and
Mi “

1
2 pJi ` iKiq (56)

(Note: Ji,Ki are hermitian; Ni is not; in fact Mi “ N :

i .) we find that

rNi, Njs “ iϵijkNk, rMi,Mjs “ iϵijkMk, rNi,Mjs “ 0. (57)

The Lie algebra of SOp3, 1q is nothing but two separate SUp2q Lie algebras!
Thus, we can build the representations of the SOp3, 1q Lie algebra from representations of the
SUp2q Lie algebra!
“ñ Each irreducible (i.e., not give by a product of two smaller representations) representation
of the SOp3, 1q Lie algebra is specified by two integers or half-integers n1 and n, which are the
eigenvalues of M3 and N3.
We label these representations by n and n1 or by the number of components in each representation,
p2n` 1q and p2n1 ` 1q.
To understand the corresponding spin of the field (and the particles that are the excitations of the
field), we go back to the Pauli-Lubanski pseudovector and the associated Casimir operator, in the
rest-frame, W 2 “ ´m2J⃗ ¨ J⃗ and also use that Ji “ Mi `Ni. Thus,

6Note that the Lie algebras for SOp3q and SUp2q are identical. For the groups, there are some subtle differences,
which need not directly concern us.
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pn, n1q
`

2n` 1, 2n1 ` 1
˘

spin name of the field
p0, 0q p1, 1q 0 scalar (singlet)
` 1

2 , 0
˘

p2, 1q 1
2 left-handed spinor

`

0, 1
2
˘

p1, 2q 1
2 right-handed spinor

` 1
2 ,

1
2
˘

p2, 2q 1 vector (this has 2 ¨ 2 “ 4 components,
which is the right number for a 4-vector)

Therefore, we now have a clear idea which fields we are going to consider. Rather than guessing
that maybe there could be elementary particles with spin 2{3 (or other non half-integer values) out
there, and somehow trying to come up with ideas for what the corresponding fields could be, we
already know that such fields/particles do not exist and we do not need to spend our time trying
to find a description for them, because our considerations, based on symmetries, tell us that such
an effort is futile.
To sum up, by considering the fundamental symmetry of Minkowski spacetime, that a theory of
fields and associated particles living on that spacetime has to satisfy, we have developed a com-
prehensive list of possible fields that can exist. Thus, rather than proceeding by trial-and-error, we
have found a systematic structure that the rest of this course (and Quantum Field Theory) will
follow. This structure is very restrictive and only allows us to consider fields which are associated
to integer or half-integer spins. It is therefore not an accident that all elementary particles have
integer or half-integer spin; there are no other options for them, based on the underlying symmetry
group, the Poincaré group.
We will work our way through the spin 0, 1{2 and 1 cases in the course, because, as it turns out,
they are all part of the Standard Model of particle physics.
Higher spins (3{2, 2) do not correspond to detected elementary particles, although spin 3/2 plays
a role in supergravity, where a spin 3/2 particle is the superpartner of the graviton. The graviton,
which is the expected quantum of the gravitational field, has spin 2.

2.5 Noether’s theorem

Symmetries not only help us to understand the building blocks of our theory (i.e., which fields
there may be and how we characterize particles), they also imply conserved quantities and thus
determine dynamical processes. The link between symmetries and conserved quantities is at the
heart of Noether’s theorem, just as in classical mechanics.

Noether’s theorem in QFT states that:
Every continuous symmetry of the action implies a conserved current density and a conserved

charge.

This is similar to Noether’s theorem in classical mechanics with the key difference being the conser-
vation of the current. To derive the theorem, we will consider a scalar field; the theorem generalizes
to non-zero spin fields, such as the gauge field and spinor fields.

As an example of a continuous spacetime symmetry, consider a translation x Ñ x1 “ x ` d. How
does ϕ Ñ ϕ1 look like? Note that we will take the active point of view, where we are assuming
that the physical field configuration changes (in contrast to the passive point of view, where the
coordinates change). It should hold that the transformed field at the transformed point is equal
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shift of field

shift of points:

net result:
Figure 1: We show a field configuration ϕpxq in the upper panel. In the central panel, we have
shifted the field by a distance d (active transformation) and in the lower panel, we have then
additionally shifted the coordinates by the same distance d, so that x1 “ x` d.

to the untransformed field at the original point, because, if we are shifting the field, but then also
shift all points, the system remains unchanged. Thus

ϕ1px1q “ ϕpxq, (58)

which is shown in Fig. 1.
Thus, ϕ1pxq is defined by applying the inverse transformation to the argument, i.e.,

ϕ1pxq “ ϕpx´ dq. (59)

When we generalize to a Lorentz transformation x1 “ Λx, we have the same behavior: the scalar
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field is evaluated at a point that corresponds to the inverse of the transformation.

ϕ1pxq “ ϕpΛ´1xq. (60)

We can also consider internal symmetries, e.g., for a complex scalar field ϕpxq taking values in C
instead of in R, we can write an action that has a Up1q symmetry:

SUp1q complex scalar “

ż

d4x

ˆ

1
2Bµϕ

˚Bµϕ´
1
2m

2ϕ˚ϕ

˙

, (61)

which is invariant under ϕpxq Ñ eiαϕpxq, and, accordingly ϕ˚pxq Ñ e´iαϕ˚pxq. The infinitesimal
version of this transformation is

ϕ1pxq “ ϕpxq p1 ` iα ` ...q . (62)

We will consider this example in much more detail later in the lecture.
To derive Noether’s theorem, we assume some continuous symmetry, but we do not need to specify
whether it is a spacetime symmetry or an internal symmetry. Noether’s theorem holds for both.
Because we are assuming a continuous symmetry, there is an infinitesimal version of this transfor-
mation of the field

ϕpxq Ñ ϕ1pxq “ ϕpxq ` εχpxq. (63)

(For a discrete symmetry, there are only finite transformations, e.g. a Z2-symmetry under which
ϕpxq Ñ ´ϕpxq has no infinitesimal version. This is why all that follows holds for continuous, but
not for discrete symmetries.)

For instance, for an infinitesimal translation, we can write the right-hand side in terms of a Taylor
expansion

ϕ1pxq “ ϕpxq `
Bϕ

Bxµ
dµ ` ..., (64)

“ ϕpxq ` ϵµχ
µpxq, (65)

where we consider dµ to be an infinitesimal shift and we defined Bµϕd
µ “ ϵµχ

µpxq. When we
perform a translation in a single direction in spacetime, this reduces back to the form ϵµχ

µ Ñ ϵ χ.
We denote the difference between the transformed and the untransformed field

δεϕ – ϕ1 ´ ϕ. (66)

Under this change in the field, the Lagrangian changes as follows:

δεL “ L1 ´ L “ Lpϕ1, Bϕ1q ´ Lpϕ, Bϕq (67)

“
BL
Bϕ
δεϕ`

BL
BpBµϕq

δεBµϕ, (68)

where δεBµϕ “ Bµϕ
1 ´ Bµϕ. (Note that we’re slightly abusing naming conventions, as advertised,

because this is the Lagrangian density, but we are referring to it as the Lagrangian. This is very
common practise in QFT.)
Because we assume that the transformation corresponds to a symmetry of the action, the action
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must stay invariant under it. Thus, the Lagrangian may at most change by a total derivative, so
we can write

δεL “ εBµF
µpϕ, Bϕ, B2ϕ, xq, (69)

where, depending on the symmetry Fµ may actually be zero, so that even the Lagrangian is
invariant under the symmetry.
We know that δεL „ ε, because δεL Ñ 0 for ε Ñ 0. In principle, Fµ “ Fµpϕ, Bϕ, B2ϕ, xq can have
dependencies on x and on B2ϕ, etc., even if L does not.
Now we want to derive the conserved current. BµF

µ is a good starting point, because it already
has the required form for a conservation law, Bµj

µ “ 0.

εBµF
µ “ δεL “

BL
Bϕ
δεϕ`

BL
BpBµϕq

δεBµϕ. (70)

In the next step we use the equations of motion,

BL
Bϕ

´ Bµ
BL

BpBµϕq
“ 0, (71)

to rewrite the 1st term into a form that also has a partial derivative in front, as needed to derive
a conservation law. Note that this will mean that everything that follows only applies for field
configurations which satisfy the equations of motion. (In QFT, these are often called “on-shell”
configurations. In a few weeks, when we talk about the path integral quantization, we will explicitly
see the difference to the “off-shell” configurations.) We obtain

“ñ εBµF
µ “

ˆ

Bµ
BL

BpBµϕq

˙

δεϕ`
BL

BpBµϕq
δεBµϕ (72)

“ Bµ

ˆ

BL
BpBµϕq

δεϕ

˙

. (73)

Thus,
Bµ

´

Fµ ´
BL

BpBµϕq
χ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
jµ

¯

“ 0. (74)

jµ is a conserved current.

Example: Energy-momentum tensor and its conservation

In classical mechanics, the symmetry-transformation underlying energy-momentum conservation
is a space-time-translation:

xµ Ñ x1µ “ xµ ´ ϵµ. (75)

(These are really 4 symmetries packaged into one.)
The resulting transformation of the field is, as we wrote above,

ϕ1pxq “ ϕpx` εq (76)

“ñ δεϕ “ ϕpx` εq ´ ϕpxq “ εν Bνϕpxq
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
χν

(77)
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Eq. (76) means that the new field at x is the same as the old one at x`ε, because the shift is by ´ε,
and we are again using the active view on transformations. In Eq. (77), χ has an index, because
there are 4 symmetries. Eq. (77) is to 1st order in ε, because we can Taylor expand ϕpx ` εq.
Thus, if we focus on the dependence of L on x (through its dependence on ϕ),

L1pxq “ Lpx` εq (78)

“ñ δεL “ Lpx` εq ´ Lpxq (79)

“ εµBµLpxq (to 1st order in εq (80)

“ ενBµp δµνL
²
– Fµ

ν .

q (81)

Now we can use the general expression we derived before to get the conserved currents. Because
we are looking at 4 symmetries at the same time, we will have 4 conserved currents, each of which
is a 4-vector. In Eq. (81), you can think of the index µ as the index that belongs to a conserved
current (which is a four-vector) and the index ν as the one that labels the four distinct currents
that there are for the four distinct translations. Which translation is performed, is selected by the
non-zero components of ϵν .
To “package” the four conserved currents into one expression, we write

jµν “
BL

BpBµϕq
χν ´ Fµν (82)

“
BL

BpBµϕq
Bνϕ´ δµνL. (83)

This conserved tensor is usually written as

Tµν “
BL

BpBµϕq
Bνϕ´ ηµνL. (84)

It is conserved, BµT
µν “ 0, and called the energy-momentum (or stress-energy) tensor.

Let us clarify the status of Tµν : we could derive the expression jµν in Eq. (83) from spacetime
translations even if spacetime translations would not correspond to a symmetry of the action.
However, we would not have that jµν is a conserved quantity. In other words, if S1 ‰ S under a
transformation, we will have Bµj

µ ‰ 0 for the jµ corresponding to this transformation.

Side-note: The energy-momentum tensor is an entry-point into General Relativity, because, if we
promote ηµν Ñ gµν , then Tµν acts as a source for spacetime curvature in the Einstein equations.
The physical meaning behind that is that any form of energy or momentum sources spacetime
curvature.

In our statement of Noether’s theorem, we also mentioned the conservation of a charge. Let us
derive what the conserved charge is. From the conservation of the current, we can also derive the
conservation of a charge:

Qptq “

ż

d3x j0pt, x⃗q. (85)

It holds that
9Q “

d
dtQptq “ 0, (86)
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if we assume that all fields and their derivatives vanish at |x| Ñ 8, i.e., we only consider nonzero
field configurations away from spatial infinity. This is reasonable to describe all realistic physical
situations that we are interested in (e.g., particle physics experiments at CERN, phonons in the
Bose-Einstein-Condensates of our experimental friends in Neuenheimer Feld, or superconducting
Cooper-pairs in superconductors in various labs, all of which are described by QFT.)
We can show 9Q “ 0 as follows:

9Q “
d
dt

ż

d3x j0pt, x⃗q “

ż

d3x
`

B0j
0pt, x⃗q

˘

(87)

“ ´

ż

d3x Bij
ipt, x⃗q pby conservation of the currentq (88)

“ ´

ż

dxdydzpBxj
x ` Byj

y ` Bzj
zq (89)

“ ´

ż

dydz jx
ˇ

ˇ

ˇ

ˇ

xÑ˘8

`

ż

dxdz jy
ˇ

ˇ

ˇ

ˇ

yÑ˘8

`

ż

dxdy jz
ˇ

ˇ

ˇ

ˇ

zÑ˘8

(90)

“ 0, (91)

if fields and derivatives vanish at |x| Ñ 8, so that j vanishes there.
Let us highlight that the conservation of a current is stronger than the conservation of the charge,
because it implies that the charge is conserved locally, i.e., changes of the charge in a (finite) volume
in time must be accounted for by a current flowing though the surface of the volume. To see this,
write:

dQV
dt “ ´

ż

V

d3x ∇⃗ ¨ j⃗ “ ´

ż

A“BV

j⃗ ¨ dS⃗. (92)

QV is the charge in a volume V . In the last step we used Gauss’ theorem for volume integrals of
divergences.
Example: the conserved charges following from the conservation of the energy-momentum tensor
are:

ż

d3x T 00 “

ż

d3x

ˆ

BL
B 9ϕ

9ϕ´ L
˙

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
We recognize this

as the Hamiltonian!

“ H “: P 0 (93)

The other conserved charges are the spatial momenta, so P ν “
ş

d3x T 0ν is conserved.

Noether’s theorem also applies to continuous internal symmetries. We’ll consider an example later
in the course.

Mini-Exercise 5. Take
L “

1
2BµϕBµϕ´

1
2m

2ϕ2. (94)

What is P i?
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Solution.

P i “

ż

d3x T 0i “
BL
B 9ϕ

Biϕ´ η0i

°
“0

L

“ 9ϕ Biϕ. pnot surprisingly only dependent on kinetic energy)

We note that the conserved quantities in turn are the generators of the associated symmetry.
This closes our considerations of symmetries. We have learned that symmetries are encoded in
groups. Continuous symmetries of interest in physics are Lie groups, for which each symmetry
transformation can be generated by the generators of the Lie algebra. In turn, Noether’s theorem
tells us that each symmetry leads to a conserved quantity. This conserved quantity is the generator
that generates this symmetry.
If we did not know about the Lie group associated to a symmetry, we could therefore learn about
it from the action of the symmetry and the resulting conserved quantities.
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3 Canonical quantization of the free scalar field

We are now ready to quantize the scalar field. We will first quantize it according to canonical
quantization, because that makes the connection between fields and particles clear. We will then
quantize it according to path-integral quantization, because that makes the quantum superposition
principle clear. By introducing both canonical and path-integral formalism early on (as not all
QFT books do), we are also acquiring a versatile toolbox with which to build more complicated
QFTs (e.g., the Standard Model of particle physics) later. In addition, the canonical framework
and the path-integral framework provide us with a different type of intuition about quantum fields,
so it is very useful to know both.

3.1 Canonical Quantization of the real scalar field in the Schrödinger
picture

We start with the non-interacting field, L “ 1
2 BµϕBµϕ´ 1

2m
2ϕ2. In the Schrödinger picture, we only

consider the spatial dependence of the field (the time-dependence will be carried by the states).
We work in a formal analogy to quantum mechanics, where we generalize its formal structure.
In Quantum Mechanics, we have the operators x and p “ dL

d 9x , for which we impose rx, ps “ i

(in units where ℏ “ 1). We will generalize this structure by making the analogy x » ϕpx⃗q and
p » Πpx⃗q “ BL

B 9ϕ
.7

In analogy to quantum mechanics, we promote the field and its conjugate field to operators8 and
demand commutation relations:

rϕpx⃗q,Πpy⃗qs “ iδ3px⃗´ y⃗q (95)

rϕpx⃗q, ϕpy⃗qs “ 0 “ rΠpx⃗q,Πpy⃗qs. (96)

The operators have no time dependence, because we work in the Schrödinger picture, where states
carry time-dependence and operators do not. The operators depend on the spatial position, x⃗, be-
cause they are fields and thus describe infinitely many degrees of freedom (one at each spacetime
point) rather than finitely many, as in QM.

So far, these are formal expressions. How can we build the Hilbert space of states and what
operators will the states be eigenstates of? Also, how does the field act on the states; what is the
physical meaning of that?
To answer all of these questions, we start from the observation that the Hamiltonian H is very
reminiscent of an (infinite) set of harmonic oscillators (one for each point) and we know how to
quantize the harmonic oscillator. In detail, the Hamiltonian of the free scalar field is:

H “
1
2

ż

d3x pΠ2 ` p∇⃗ϕq2 `m2ϕ2q (97)

In comparison, the Hamiltonian of the harmonic oscillator in quantum mechanics is HQM “ 1
2mp

2`

mω2

2 x2.
7Note that Πpx⃗q has nothing to do with the physical momentum, i.e., the momentum P⃗ that we can derive as

a conserved quantity from Noether’s theorem for spatial translation. The physical momentum can be expressed in
terms of the fields, as is done at the end of the last chapter.

8Note: We are not putting hats on operators. It should be clear from the context, when we are dealing with the
QM theory in its canonical formulation and hence with operators.
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However, the structure of H is not fully analogous to HQM, because the term „ p∇⃗ϕ2q couples
harmonic oscillators at neighboring points.
We can actually decouple the oscillators by going to Fourierspace, where p∇⃗ϕq2 will become „ pp⃗ϕq2

and H will become an infinite set of decoupled harmonic oscillators, one for each Fourier mode (or
momentum).
We write the field ϕpx⃗q in terms of its Fourier modes ϕ̃pp⃗q as

ϕpx⃗q “

ż

d3p

p2πq3 e
ip⃗¨x⃗ϕ̃pp⃗ q (98)

and the inverse relation
ϕ̃pp⃗ q “

ż

d3x e´ip⃗¨x⃗ϕpx⃗q, (99)

where, to show this inverse relation, it is crucial that
ż

d3p

p2πq3 e
ip⃗¨px⃗´y⃗q “ δ3px⃗´ y⃗q. (100)

You will prove this representation of the Dirac delta-distribution in the exercises.
Similar expressions hold for Πpx⃗q. From these, and the commutators for ϕpx⃗q and Πpy⃗q, we can
deduce

“

ϕ̃pp⃗q, Π̃pq⃗q
‰

.

Mini-Exercise 6. Deduce what the commutator
“

ϕ̃pp⃗q, Π̃pq⃗q
‰

is.

Solution.

“

ϕ̃pp⃗q, Π̃pq⃗q
‰

“

ż

d3x

ż

d3y e´ip⃗¨x⃗e´iq⃗¨y⃗ rϕpx⃗q,Πpy⃗qs
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
iδ3px⃗´y⃗q

“ i

ż

d3x e´ix⃗¨pp⃗`q⃗q

“ ip2πq3δ3pp⃗` q⃗q.

Further, one can similarly check that

“

ϕ̃pp⃗q, ϕ̃pq⃗q
‰

“ 0 “
“

Π̃pp⃗q, Π̃pq⃗q
‰

. (101)

To evaluate H in Fourierspace, let’s first focus on the term
ż

d3x p∇⃗ϕq2 “

ż

d3x

ż

d3p

p2πq3 ip⃗ e
ip⃗¨x⃗ϕ̃pp⃗q

ż

d3q

p2πq3 iq⃗ e
iq⃗¨x⃗ϕ̃pq⃗q. (102)

The scalar product between the two gradients, ∇⃗ ¨ ∇⃗ becomes the scalar product between p⃗ and
q⃗. We proceed by rearranging the terms so that all those involving x are grouped together in the
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back:
ż

d3x p∇⃗ϕq2 “

ż

d3p

p2πq3

ż

d3q

p2πq3 p´p⃗ ¨ q⃗qϕ̃pp⃗qϕ̃pq⃗q

ż

d3x eip⃗¨x⃗eiq⃗¨x⃗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p2πq3δ3pp⃗`q⃗q

(103)

“

ż

d3p

p2πq3 p`p⃗ 2qϕ̃pp⃗qϕ̃p´p⃗q. (104)

ϕ̃p´p⃗q is related to ϕ̃pp⃗q through complex conjugation, because ϕpx⃗q is real:

ϕpx⃗q “ ϕ˚px⃗q “ñ ϕ̃:pp⃗q “ ϕ̃p´p⃗q. (105)

We write a dagger, because we are dealing with operators. The classical field satisfies
ϕ˚pp⃗q “ ϕp´p⃗q. Overall, we arrive at

H “

ż

d3p

p2πq3
1
2

´

ˇ

ˇΠ̃
ˇ

ˇ

2

±̃
Π¨Π̃:

` pp⃗ 2 `m2q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

“ω2
p⃗

ˇ

ˇϕ̃
ˇ

ˇ

2¯
. (106)

Now we have achieved full analogy with an (infinite, but not coupled) set of harmonic oscillators
and so we know how to proceed to construct the Hilbert space!

At a conceptual level, the expression highlights

• the difference to QM: one (or finitely many) vs. infinitely many degrees of freedom

• a dangerous assumption: We assumed in this derivation, that this theory is consistent up to
arbitrarily high energies (arbitrarily high ωp⃗). We will recap the consequences when we come
to the topic of Ultraviolet (UV) divergences later.
Note: UV has nothing to do with a frequency of light here; in QFT, it refers to “high energy”.

3.2 Creation and annihilation operators and construction of the Fock
space

We have rewritten the Hamiltonian for the non-interacting scalar field as an infinite set of decou-
pled harmonic oscillators, one for each momentum p⃗.
Conceptually, this highlights the difference between QM and QFT: finitely vs. infinitely many de-
grees of freedom (we will see how they are related to particles).
Mathematically, it means that we can follow the procedure to solve the simple harmonic oscillator
in QM and generalize to QFT.

For the simple harmonic oscillator in QM, with Hamiltonian HQM “ 1
2mp

2 ` mω2

2 x2, we introduce
a “ 1

2 p
?

2ωmx ` i
b

2
ωm pq and obtain H “ ωpa:a ` 1

2 q and
“

a, a:
‰

“ 1 and can construct all
eigenstates of H with the “ladder” operators a, a:.
In analogy, we define an operators a for each p⃗, i.e., one simple harmonic oscillator for each of the
infinitely many values of the spatial momentum p⃗, and check whether this works out. (Note that
this is not a priori clear, because ϕ̃pp⃗q is conjugate to Π̃p´p⃗q and not Π̃pp⃗q, because

“

ϕ̃pp⃗q, Π̃p´q⃗q
‰

“
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ip2πq3δ3pp⃗´ q⃗q.) We define:

ap⃗ “
1
2

´

a

2ωp⃗ ϕ̃pp⃗q ` i

d

2
ωp⃗

Π̃pp⃗q

¯

(107)

The form of a:

p⃗ follows:

a:

p⃗ “
1
2

´

a

2ωp⃗ ϕ̃p´p⃗q ´ i

d

2
ωp⃗

Π̃p´p⃗q

¯

, (108)

where we used that ϕ̃:pp⃗q “ ϕ̃p´p⃗q and Π̃:pp⃗q “ Π̃p´p⃗q. In the next step, we have to figure out the
commutation relations of ap⃗ and a:

p⃗ from those for the field and its conjugate field.

Mini-Exercise 7. What is
”

ap⃗, a
:

q⃗

ı

? Work efficiently and don’t write out terms that will be
zero.

Solution. By using ap⃗ expressed through ϕ̃, Π̃, we can rewrite
”

ap⃗, a
:

q⃗

ı

in terms of the
commutators of ϕ̃ and Π̃. By using that

“

ϕ̃pp⃗q, ϕ̃pq⃗q
‰

“ 0 “
“

Π̃pp⃗q, Π̃pq⃗q
‰

, we can directly
reduce this to

”

ap⃗, a
:

q⃗

ı

“

«

1
2
a

2ωp⃗ ϕ̃pp⃗q,
´i

2

d

2
ωq⃗

Π̃p´q⃗q

ff

`

«

1
2 i
d

2
ωp⃗

Π̃pp⃗q,
1
2
a

2ωq⃗ ϕ̃p´q⃗q

ff

“
´i

2

c

ωp⃗
ωq⃗
ip2πq3δ3pp⃗´ q⃗q `

i

2

c

ωq⃗
ωp⃗
ip2πq3p´qδ3p´q⃗ ` p⃗q

“ p2πq3δ3pp⃗´ q⃗q.

In the last step, we set
b

ωp⃗

ωq⃗
δ3pp⃗ ´ q⃗q “ δ3pp⃗ ´ q⃗q, because, wherever the prefactor ωp⃗

ωq⃗
­“ 1,

δ3pp⃗´ q⃗q Ñ 0.

Similarly, we can derive that
rap⃗, aq⃗s “ 0 “

”

a:

p⃗, a
:

q⃗

ı

. (109)

Thus, we have established analogous commutations relations between the a’s and a:’s as those
in QM. Now, we want to check whether we can also rewrite the Hamiltonian in a way that is
analogous to QM. For that, it is useful to write ϕ̃pp⃗q and Π̃pp⃗q in terms of ap⃗ and a:

p⃗.
From (107) and (108), we get

ϕ̃pp⃗q “
1

a

2ωp⃗
pap⃗ ` a:

´p⃗q (110)

Π̃pp⃗q “ ´i

c

ωp⃗
2 pap⃗ ´ a:

´p⃗q. (111)
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Thus, the Hamiltonian becomes

H “

ż

d3p

p2πq3
1
2

´

ˇ

ˇΠ̃
ˇ

ˇ

2
` ω2

p⃗

ˇ

ˇϕ̃
ˇ

ˇ

2¯ (112)

“

ż

d3p

p2πq3
1
2

´

´iωp⃗
2 pap⃗ ´ a:

´p⃗qipa:

p⃗ ´ a´p⃗q ` ω2
p⃗

1
2ωp⃗

pap⃗ ` a:

p⃗qpa:

p⃗ ` a´p⃗q

¯

(113)

“

ż

d3p

p2πq3
ωp⃗
4

´

ap⃗a
:

p⃗ ´
�������
ap⃗a´p⃗ ´ a:

´p⃗a
:

p⃗ ` a:

´p⃗a´p⃗ ` ap⃗a
:

p⃗ `
�������
ap⃗a´p⃗ ` a:

´p⃗a
:

p⃗ ` a:

´p⃗a´p⃗

¯

(114)

“

ż

d3p

p2πq3
ωp⃗
2 pap⃗a

:

p⃗ ` a:

´p⃗a´p⃗q. (115)

In the underlined term, we rename the integration variable p⃗ Ñ ´p⃗. Under this change, ωp⃗ “

ω´p⃗ “
a

p⃗ 2 `m2 and
ş

d3p Ñ
ş

d3p. Thus,

H “

ż

d3p

p2πq3
ωp⃗
2 pap⃗a

:

p⃗ ` a:

p⃗ap⃗q. (116)

Just like in QM, it will be useful to rewrite the order or ap⃗ and a:

p⃗, which we can do by using the
commutator.

ñ H “

ż

d3p

p2πq3 ωp⃗

´

a:

p⃗ap⃗ `
1
2

”

ap⃗, a
:

p⃗

ı

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
p2πq3δ3p0q

¯

. (117)

We interpret p2πq3δ3p0q “
ş

d3x ei⃗0¨x⃗ “
ş

d3x “ VolpR3q “: V as the volume of space, so that

H “

ż

d3p

p2πq3 ωp⃗

ˆ

a:

p⃗ap⃗ `
V

2

˙

. (118)

The part
ş

d3p
p2πq3 ωp⃗

V
2 is divergent, due to the contribution of zero-point energies of harmonic oscil-

lators with arbitrarily high frequency (even if V is kept finite). This is called an ultraviolet (UV)
divergence.
We will encounter more UV divergences soon, when we will discuss regularization and renormaliza-
tion. The physical reason behind UV divergences is always that we consider momentum integrals
to arbitrarily high momenta. In doing so, we are assuming that the theory that we are considering
holds to arbitrarily small distances (high momenta). This is clearly a (wild) extrapolation, because
experimentally we can only check QFTs (e.g., those that make up the Standard Model) down to
„ 10´19m (or 10TeV). In QFTs relevant to condensed matter, there is a known UV cutoff in the
form of the lattice spacing between atoms. Below this cutoff, it does not make sense to think
about, e.g., phonons or other collective excitations that are described by a QFT.

Specifically, the UV divergence associated to the vacuum energy, V
ş

d3p
p2πq3

ωp⃗

2 , can be ignored
in QFT on M4 in the absence of non-trivial boundary conditions, because we can only measure
differences in energy, but not a constant, ever present (even if infinite) shift in H.
However, once we couple QFT to gravity, the vacuum energy curves spacetime and acts as a
cosmological constant. The fact that the physical, finite value (after renormalization) of it cannot
be calculated, but is a free parameter, is part of the cosmological-constant problem.
Now we can continue with constructing the Fock space. To do so, we postulate a vacuum state |0y,

ap⃗ |0y “ 0 @ p⃗. (119)

33



One-particle states are defined as
|p⃗y “ a:

p⃗ |0y . (120)

Why is this called a one-particle state?

Mini-Exercise 8. Calculate H |p⃗y and from your finding, explain why |p⃗y is called one particle
state.

Solution.

H |p⃗y “

ż

d3k

p2πq3 ωk⃗a
:

k⃗
ak⃗a

:

p⃗ |0y

“

ż

d3k

p2πq3 ωk⃗a
:

k⃗

”

ak⃗, a
:

p⃗

ı

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
p2πq3δ3pk⃗´p⃗q

|0y ` 0 pusing ap⃗ |0y “ 0q

“ ωp⃗ a
:

p⃗ |0y

“ ωp⃗ |p⃗y .

ωp⃗ “
a

p⃗ 2 `m2 is the relativistic energy of a single particle of mass m and momentum p⃗.
This justifies calling |p⃗y a one-particle state.

Note that this state contains a single particle of fixed momentum, but completely delocalized. We
will look at localized states later.
We can continue with N -particle states

|p⃗1 . . . p⃗N y “ a:

p⃗1
. . . a:

p⃗N
|0y (121)

and find
H |p⃗1 . . . p⃗N y “ pωp⃗1 ` . . .` ωp⃗N

q |p⃗1 . . . p⃗N y . (122)

So far, these states are not normalized yet. We impose

||0y|
2

“ x0|0y “ 1. (123)

Then,
´

a:

p⃗ |0y

¯

¨

´

a:

q⃗ |0y

¯

“ x0| ap⃗ a
:

q⃗ |0y “ p2π3qδ3pp⃗´ q⃗q, (124)

i.e., one-particle states with different momenta are orthogonal. However, we want to change the
normalization in order to account for Lorentz covariance.
We want

Λ |py “
ˇ

ˇp1
D

, if p1µ “ Λµνpν , (125)

such that we can demand
@

p1
ˇ

ˇq1
D

“ xp|qy , (126)

i.e., a norm that does not depend on the Lorentz frame. Relativistically normalized states, denoted
by |py to distinguish them from |p⃗y, are

|py “
a

2ωp⃗ a:

p⃗ |0y . (127)
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This result will be derived in the exercises; the corresponding derivation will be added here after-
wards.
To find the appropriate normalization, we write

ż

d4p δ4pω2
p⃗ ´ p⃗ 2 ´m2q

ˇ

ˇ

ˇ

ˇ

ωp⃗ą0
“

ż

d3p

2ωp⃗
. (128)

The left hand side (lhs) is Lorentz -invariant, because the sign of ωp⃗ does not change under boosts.
In going to the right hand side (rhs), we use

δpfpxqq “
ÿ

i

δpx´ aiq
ˇ

ˇ

ˇ

ˇ

df
dx

ˇ

ˇ

ˇ

ai

ˇ

ˇ

ˇ

ˇ

, (129)

where ai are the zeros of f .
ω2
p⃗ ´ p⃗ 2 ´m2 has solutions ωp⃗ “ ˘

a

p⃗ 2 `m2. However, the minus sign is not a viable zero given
our requirement ωp⃗ ą 0.

“ñ

ż

d4p δpω2
p⃗ ´ p⃗ 2 ´m2q

ˇ

ˇ

ˇ

ˇ

ωp⃗ą0
“

ż

d4p
δpωp⃗ ´

a

p⃗ 2 ´m2q

2ωp⃗

ˇ

ˇ

ˇ

ˇ

ˇ

ωp⃗ą0

“

ż

d3p

2ωp⃗
. (130)

“ñ 2ωp⃗ δ3pp⃗´ q⃗q is Lorentz invariant, because

ż

d3p

2ωp⃗
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

Lorentz-inv.,
see above

¨2ωp⃗ δ3pp⃗´ q⃗q “ 1®
Lorentz-inv.,

. (131)

“ñ Relativistically normalized states, denoted by |py to distinguish them from |p⃗y, are

|py “
a

2ωp⃗ a:

p⃗ |0y . (132)

In summary, a consistent set of creation/annihilation operators, field expansion and states is given
by

ϕpxq “

ż

d3p

p2πq3
1

a

2ωp⃗

´

ap⃗e
´ipx ` a:

p⃗e
ipx

¯

, (133)

Πpxq “ p´iq

ż

d3p

p2πq3

?
ωp⃗

?
2

´

ap⃗e
´ipx ´ a:

p⃗e
ipx

¯

, (134)
”

ap⃗, a
:

p⃗1

ı

“ p2πq3δ3pp⃗´ p⃗1q, (135)

|py “
a

2ωp⃗ a:

p⃗ |0y, (136)

xp1|py “ p2πq3 2ωp⃗ δ3pp⃗´ p⃗1q (137)

Alternatively, we can change the normalization of ap⃗ and a:

p⃗ by

ap⃗ Ñ
`a

2ωp⃗
˘´1

ap⃗, a:

p⃗ Ñ
`a

2ωp⃗
˘´1

a:

p⃗. (138)

This does of course not change our normalization of the scalar product of states, because this
is independent of the definition of ap⃗ and a:

p⃗ (and should of course be Lorentz invariant in any
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normalization of the operators – this property can also not change when we simply absorb factors
into our definition of the creation and annihilation operators). In this other normalization, we
accordingly have

ϕpxq “

ż

d3p

p2πq3
1

2ωp⃗

´

ap⃗e
´ipx ` a:

p⃗e
ipx

¯

, (139)

Πpxq “ p´iq

ż

d3p

p2πq3

´

ap⃗e
´ipx ´ a:

p⃗e
ipx

¯

, (140)
”

ap⃗, a
:

p⃗1

ı

“ p2πq3 2ωp⃗ δ3pp⃗´ p⃗1q, (141)

|py “ a:

p⃗|0y, (142)

xp1|py “ p2πq3 2ωp⃗ δ3pp⃗´ p⃗1q (143)

Depending on the book that you are consulting, you may find one or the other normalization. We
may also sometimes switch between different normalizations throughout these lecture notes.

3.3 Casimir effect

A recurring theme throughout this course will be the result that quantum fluctuations have non-
trivial physical consequences. Examples that we will consider later include the result that quantum
fluctuations can spontaneously break a symmetry that the classical theory has (Coleman-Weinberg
potential) and that quantum fluctuations can produce interactions between photons, even though
electromagnetic waves are non-interacting in the classical theory (Euler-Heisenberg Lagrangian).
A second, related theme is that in the corresponding calculations, divergences show up. Histori-
cally, these led (and actually still lead) to confusion, because it is not always straightforward to see
that these divergences occur in unphysical, un-measurable quantities and the physical, measurable
quantities are finite. The divergences are treated through regularization and renormalization.

In nature, the Casimir effect occurs for the electromagnetic field (that we will quantize in a few
weeks). It is a result of the fact that on a conducting plate, the electric field must vanish (because
otherwise it induces a current that counteracts the field). Thus, if we place two parallel, conducting
plates in a vacuum, the field has to satisfy boundary conditions, namely that it vanishes at the
location of both plates:

d

A A

Figure 2: Two parallel plates at distance d, each of area A.

We model this effect with a massless scalar field and simplify the situation to 1+1 dimensions, so
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that we can forget about the directions parallel to the plates. Then, we impose boundary conditions

ϕp0q “ 0 “ ϕpdq. (144)

From this, it follows that the momentum is discrete, allowed values are

px “
nπ

d
, (145)

so that
ω2
p⃗ “ p⃗2 Ñ

nπ

d
, (146)

and the integral
ş

dpx

2π Ñ 1
d

ř8

n“1.
Thus, the expression for the ground-state energy density is

ϵ “
x0|H|0y

d
“

1
d2

ÿ

n

nπ

d

ˆ

x0|a:

p⃗ap⃗|0y `
d

2

˙

“
1
2d

ÿ

n

nπ

d
. (147)

In contrast, the energy density outside of the plates is given by a continuous set of Fourier modes.
We note that the energy density between the plates is therefore lower than outside the plates.
Thus, we expect a force on the plates. This attractive force is exerted by the vacuum. It is the
Casimir force.

The expression for the ground state energy density is divergent. To calculate the Casimir force,
we need to regularize the divergence. We do so by multiplying each mode by e´αnπ

d and take the
limit α Ñ 0 at the end of the calculation.
Now comes the key physical point about our treatment of (most) divergences in QFT: We need to
distinguish divergences in unphysical (i.e., not measurable) quantities from divergences in physical
(i.e., measurable quantities). Divergences in unphysical quantities are not necessarily a problem.
Divergences in physical quantities are a problem and signal that the theory is not valid for the
problem that we have applied it to.
What typically happens in calculations of loop effects (or in other words, calculations that involve
quantum fluctuations) in QFT is, that unphysical quantities at some intermediate point of our
calculation diverge. Measurable quantities stay finite. In some sense, they just mean that we have
not set up our formalism in such a way that is best adapted to the physics.
In the concrete example, we clearly see that the ground-state energy density diverges. However, it
is not itself observable. Instead, the Casimir force is observable, so the key question is whether or
not the Casimir force diverges, when we remove the regularization.
Then, FCasimir “ ´

Bdp∆ϵq
Bd , where ∆ϵ is the difference in energy densities and dp∆ϵq the difference

in energies.

∆ϵ “
π

2d2

8
ÿ

n“1
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
energy density

between the plates

´ lim
dÑ8

π

2d2

8
ÿ

n“1
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
energy density

outside the plates

. (148)

We write the energy density outside the plates as limdÑ8, so that we can calculate the Casimir
force by subtracting two regularized quantities from each other, because the difference of two
divergent quantities is ill-defined.
Now we need to regularize the sum

ř8

n“1 n, and obtain:
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FCasimir “ ´
B

Bd
d lim
αÑ0

˜

π

2d2

8
ÿ

n“1
ne´ αnπ

d ´ lim
dÑ8

π

2d2

8
ÿ

n“1
ne´ αnπ

d

¸

. (149)

We use

π

2d

8
ÿ

n“1
ne´ αnπ

d “ ´
1
2

B

Bα

8
ÿ

n“1
e´ αnπ

d (150)

“ ´
1
2

B

Bα

1
1 ´ e´απ{d

(151)

“
1
2

1
p1 ´ e´απ{dq2 e

´ απ
d
π

d
. (152)

Thus,

“ñ FCasimir “ ´
B

Bd
d lim
αÑ0

ˆ

π

2d2
e

απ
d

peαπ{d ´ 1q2 ´ lim
dÑ8

π

2d2
e

απ
d

peαπ{d ´ 1q2

˙

. (153)

Now we take the limit α Ñ 0, for which we can expand the above expression up to the α0 term.
The series is a Laurent series, i.e., it starts with a negative power of α. This term diverges in
the limit α Ñ 0. This divergence is not an observable (measurable) quantity. In the measurable
quantity, namely the force, this divergence cancels. As emphasized above, this is a first example of
an important point in UV divergences in QFT, namely to carefully distinguish between divergences
in physical and unphysical quantities.

In fact, we find that the divergent parts of the energy density between and outside the plates
cancel:

FCasimir “ ´
B

Bd
d lim
αÑ0

ˆ

1
2πα2 ´

π

24d2 ´ lim
dÑ8

ˆ

1
2πα2 ´

π

24d2

˙˙

(154)

“ ´
B

Bd

ˆ

´
π

24
d

d2

˙

“ ´
π

24d2 (155)

Thus, we are finding a finite, attractive force between the plates. The dependence on d has been
tested experimentally, confirming our procedure. Note that the key point of properly dealing with
the divergences was to focus on an observable quantity. In this quantity, two formally divergent
expressions cancel, which makes the calculation subtle, but there is nothing problematic about it.
Note that our result says that

ř8

n“1 “ ´ 1
12 , at least in the context that we investigated here. In

fact, this equality also shows up when doing ζ-function regularization and renormalization. There,
the Casimir force is defined from an analytical continuation of the ζ-function, which implies the
above result. In this method of dealing with divergent, intermediate results, the regularization and
renormalization is done implicitly and it is conceptually less clear what one is doing.
Let us also stress that the final result for the Casimir force is independent of the choice of regu-
larization; confirming that we are extracting a prediction for a physical quantity (which must not
depend on arbitrarily chosen regularizations).

3.4 Quantum statistics

We know that multi-particle states which are antisymmetric (symmetric) under exchange of any
two particles contain fermions (bosons). Which one do we have in our Fock space? Because
”

a:

p⃗, a
:

q⃗

ı

“ 0, we have that |p1p2y “ |p2p1y and similarly for states with more particles. In detail,
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we see the link between the statistics and the choice of commutator (over anticommutator, for
which ta:

p⃗, a
:

q⃗u “ a:

p⃗a
:

q⃗ ` a:

q⃗a
:

p⃗ as follows:

|p1p2y “ a:

p⃗1
a:

p⃗2
|0y “

´

ra:

p⃗1
, a:

p⃗2
s ` a:

p⃗2
a:

p⃗1

¯

|0y “ |p2p1y. (156)

This means that the particles are bosons. This result is the first example of the spin-statistics
theorem, which says that particles with integer spin are bosons and particles with half-integer spin
are fermions. Mathematically, the correct quantization for bosons is the one using the commutator
of creation and annihilation operators.
If we perform the same calculation with an anticommutator, we obtain |p2p1y “ ´|p1p2y, i.e., the
state changes by a sign under the exchange of two particles. This is Fermi-Dirac statistics, and
results in the Pauli exclusion principle, where the state |p py “ 0, i.e., no two particles can be in
the same state.
In the exercises, we will learn what goes wrong, if we try to quantize using the anticommutator
(which would imply fermionic statistics, i.e., the Pauli exclusion principle). When we quantize spin
1{2 particles later in the lecture, we will learn that we must use the anticommutator, and that
therefore they satisfy Fermi statistics and the Pauli exclusion principle.

3.5 Interpretation of ϕpx⃗q

Now that we have constructed the Fock space, we can understand how ϕpx⃗q acts on the vacuum:

ϕpx⃗q |0y “? (157)

Mini-Exercise 9. Calculate the rhs of this expression. Use

ϕpx⃗q “

ż

d3p

p2πq3 e
ip⃗¨x⃗ϕ̃pp⃗q and ϕ̃pp⃗q “

1
a

2ωp⃗
pap⃗ ` a:

´p⃗q. (158)

Solution.

ϕpx⃗q |0y “

ż

d3p

p2πq3
eip⃗¨x⃗

a

2ωp⃗
pap⃗ ` a:

´p⃗q |0y

“

ż

d3p

p2πq3
eip⃗¨x⃗

a

2ωp⃗
a:

´p⃗ |0y

“

ż

d3p

p2πq3
1

a

2ωp⃗
e´ip⃗¨x⃗ a:

p⃗ |0y

²
|p⃗y

“

ż

d3p

p2πq3
1

2ωp⃗
e´ip⃗¨x⃗ |py .

This has the interpretation of a superposition of 1-particle states with different momenta. Because
we are integrating over all momenta, the result only depends on x⃗, in other words, ϕpx⃗q |0y is a
one-particle state at position x⃗. We will use this information later, when we discuss causality.
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3.6 Heisenberg picture

So far, we have worked in the Schrödinger picture, where the field operators ϕpx⃗q and Πpx⃗q have no
time-dependence. Instead, the states evolve in time, |py “ |ppt “ 0qy and |pptqy “ e´iHt |ppt “ 0qy.
The relations between field operators and states that we have used so far are relations at t “ 0.
It is clearly not natural in a Poincaré-invariant theory to separate temporal and spatial dependence
from each other. Instead, we switch to the Heisenberg picture, where operators depend on space
and time and states are held fixed. The time dependence of any operator O follows from the
requirement

xψ|Optq|ψy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Heisenberg

“ xψptq|O|ψptqy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Schrödinger

. (159)

In particular, the field operator becomes

ϕpxq “ eiHt
ż

d3p

p2πq3
1

a

2ωp⃗

´

ap⃗ e
ip⃗¨x⃗ ` a:

p⃗ e
´ip⃗¨x⃗

¯

e´iHt (160)

“

ż

d3p

p2πq3
1

a

2ωp⃗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p˚q

´

ap⃗ e
´ipx ` a:

p⃗ e
ipx

¯

(161)

For the Lorentz invariance of the measure p˚q, see our discussion of state normalization. Note that
we now have 4-vector products in the exponents, i.e., px “ pµx

µ, which are also Lorentz invariant.

3.7 Causality

Causality is a key property of a QFT. Causality implies that operators at spacelike distances
commute and can therefore be measured simultaneously. It is one of the properties that is not
automatically built into Quantum Mechanics and that motivated us to develop a new formalism,
the QFT formalism.
In particular, the requirement that operators at spacelike distance should commute holds for ϕpxq,
i.e., we need rϕpxq, ϕpyqs “ 0 for px ´ yq2 ă 0 for causality to hold. Physically, this means that
the creation of a particle at x cannot affect the creation of a particle at y, if x and y are spacelike
separated.
Note that the equal-time-commutation relations in the Schrödinger picture, rϕpx⃗q, ϕpy⃗qs “ 0, do
not immediately imply causality; we need to check the commutator in the Heisenberg picture to
have the full spacetime-dependence of the operator.

rϕpxq, ϕpyqs “

ż

d3p

p2πq3
1

a

2ωp⃗

ż

d3q

p2πq3
1

a

2ωq⃗

´”

ap⃗, a
:

q⃗

ı

e´ipx`iqy `

”

a:

p⃗, aq⃗

ı

eipx´iqy
¯

, (162)

where we directly set the vanishing commutators among two a’s or two a:’s to zero.

rϕpxq, ϕpyqs “

ż

d3p

p2πq3
1

2ωp⃗
e´ippx´yq ´

ż

d3p

p2πq3
1

2ωp⃗
eippx´yq. (163)

This expression does not vanish for timelike distances, e.g., taking px´ yq “ pt, 0, 0, 0q, we get

rϕpx⃗, 0q, ϕpx⃗, tqs „ e´iωp⃗t ´ eiωp⃗t. (164)
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This expression vanishes for spacelike separation. This follows, because rϕpx⃗, tq, ϕpy⃗, tqs vanishes,
which we can see from

rϕpx⃗, tq, ϕpy⃗, tqs “

ż

d3p

p2πq3
1
ωp⃗

´

eip⃗¨px⃗´y⃗q ´ e`ip⃗¨px⃗´y⃗q
¯

(165)

“ 0. (166)

We have flipped the sign of p⃗ by changing the integration variable p⃗ Ñ ´p⃗ in the second term.
However, rϕpxq, ϕpyqs must be a Lorentz invariant expression, because it is based on the Lorentz
invariant integration measure. Thus, it can only depend on px ´ yq2 and must therefore vanish
for all px ´ yq2 ă 0, irrespective of whether the two times are equal, since a boost of a spacelike
interval can always be used to bring the two points to equal times.
Thus, causality is respected by our theory - which is not surprising, because we’re basing it on
Lorentz invariance and so the notion that nothing can propagate faster then light is built in.

3.8 A note on quantum entanglement:

Locality in QFT implies that local operators, defined at a single spacetime point, commute at
spacelike distances. At a first glance, one might wonder whether locality in QFT is not in con-
tradiction to entanglement in QM, where states can be entangled over spacelike distances, e.g.,
in EPR-states. However, the fact that in QFT local operators commute is not at odds with the
existence of entangled states. Consider the following example in QM, an entangled state of two
spin 1{2 particles, which can be at large spatial distance

|ψy “
1

?
2

p|Öy ´ |Œyq. (167)

S1, measuring the spin or particle 1, and S2, measuring the spin of particle 2, commute nevertheless,
and the expectation value of S2 is not changed by measuring S1.
Just like the states in QM can be non-local, the states in QFT are generically non-local; in our
discussion of the path-integral formalism we will see that states are represented as functionals of
the field configuration and depend on non-local information.

3.9 Propagators and causality

Literature suggestion: Peskin/Schröder.

There is a different question we could ask to probe the causal structure of the theory. We prepare a
particle at spacetime point y, by acting with ϕpyq on the vacuum. We the ask that the probability
amplitude is to find the particle at ϕpxq. This is encoded in the propagator

Dpx´ yq “ x0|ϕpxq
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

particle at x

ϕpyq |0y
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

particle at y

“ x0|ϕpxqϕpyq |0y , (168)

which is the probability amplitude for the particle to propagate from y to x.
We study its structure here for two reasons: First, at a physical level, we will achieve a crucial
insight into the physical reason why antiparticles (particles with the same mass and spin, but
opposite charges under internal symmetries, e.g., electric charge) must exist. Second, the techniques
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of complex analysis that we will use, are useful in many other contexts in QFT and beyond, and
the propagator is a useful example to practice them with.
We might first expect that the propagator should vanish for spacelike distances. To evaluate
Dpx´ yq, we write

Dpx´ yq “

ż

d3p

p2πq3

ż

d3q

p2πq3
1

a

2ωp⃗
1

a

2ωq⃗
x0|

´

aq⃗ e
´iqx ` a:

q⃗ e
iqx

¯

¨

´

ap⃗ e
´ipy ` a:

p⃗ e
ipy

¯

|0y

(169)

“

ż

d3p

p2πq3
1

2ωp⃗
e´ippx´yq, using ap⃗ |0y “ 0 “ x0| a:

q⃗ and rap⃗, a
:

q⃗s “ p2πq3δ3pp⃗´ q⃗q.

(170)

This expression already looks like it will be non-zero for spacelike distances, but let us evaluate it
to see what exactly its form is.
First, we reduce the three-dimensional integral to a one-dimensional integral over the modulus of
p⃗, i.e., |p⃗|. This works as follows: Because we focus on spacelike distances (px ´ yq2 ă 0), we can
pick x0 “ y0 and name x⃗´ y⃗ “ r⃗, so that

Dpx´ yq

ˇ

ˇ

ˇ

ˇ

px´yq2ă0
“

ż

d3p

p2πq3
1

2ωp⃗
eip⃗¨r⃗ (171)

“
2π

p2πq3

ż 8

0
d|p⃗|

|p⃗|
2

2ωp⃗
ei|p⃗||r⃗| ´ e´i|p⃗||r⃗|

i|p⃗||r⃗|
. (172)

In this step, we rewrote
ż

d3p “

ż 8

0
d|p⃗| |p⃗|

2
ż π

0
sin θ dθ

ż 2π

0
dφ and p⃗ ¨ r⃗ “ |p⃗||r⃗| cos θ. (173)

We used
ż π

0
dθ sin θeiα cos θ “

2 sinα
α

and 2 sinα “ ie´iα ´ ieiα for α “ |p⃗||r⃗|. (174)

In the next step, we change variables according to |p⃗| Ñ ´|p⃗| in the 2nd term, so that the integral,
instead of ranging from 0 to 8, ranges from ´8 to `8.
We thus have that

Dpx´ yq

ˇ

ˇ

ˇ

ˇ

px´yq2ă0
“

´i

2p2πq2 |r⃗|
´1

ż 8

´8

d|p⃗|
|p⃗|ei|p⃗||r⃗|

b

|p⃗|
2

`m2
. (175)

This is actually an integral representation of a Hankel function, so we could just use that re-
sult, together with the asymptotic form of the particular Hankel function for large r to obtain
Dpx´ yq

ˇ

ˇ

px´yq2ă0 „ e´mr. However, to get a better idea why that happens, and to practice
techniques of complex analysis, we will arrive at that result differently.
In the complex plane (in this case, the complex-|p⃗|-plane), we can use Cauchy’s integral theorem.
The theorem says that the integral of a function over a closed curve in the complex plane vanishes,
if the function is infinitely differentiable and locally identical to its Fourier series (i.e., if it is a
holomorphic function). (If the function has poles, then the integral will pick up the corresponding
residue.) This allows us to deform integration contours, by starting from the integral along the
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real axis and completing it by some contour through the complex plane, so that together, the real
axis and the new part of the contour form a closed curve. By the theorem, the original integral
along the real axis is equal to (minus) the integral along that contour.
What we have to watch out for when doing such deformations, are poles (where the function is
singular) and branch cuts (where the limit of the function, taken from both sides of the branch
cut, is not equal, i.e., the function is multi-valued).
We encounter a simple example of a branch cut for the function

?
z with z P C. This example will

be relevant for our case. In the complex plane, we can parameterize z through its modulus and a
phase

?
z “

?
r eiθ “

?
r

ˆ

cos
ˆ

θ

2

˙

` i sin
ˆ

θ

2

˙˙

, with θ P p´π, πq. (176)

For z P R, we have that θ “ 0. Positive imaginary z has θ “ π{2 and negative imaginary z has
θ “ ´π{2. Negative real z can be approached coming from positive imaginary parts (with θ Ñ π)
or from negative imaginary parts (with θ Ñ ´π). It turns out that

?
z is discontinuous across the

negative real axis, i.e., it has a branch cut. We can see the discontinuity as follows:

lim
pr,θqÑpr0,πq

?
r

ˆ

cos
ˆ

θ

2

˙

` i sin
ˆ

θ

2

˙˙

“
?
r0 i, (177)

lim
pr,θqÑpr0,´πq

?
r

ˆ

cos
ˆ

θ

2

˙

` i sin
ˆ

θ

2

˙˙

“
?
r0 p´iq. (178)

In the integral that we are interested, there is a branch cut when |p⃗|
2

`m2 becomes negative. This
translates into |p⃗| being purely imaginary and the imaginary part either being positive and greater
than m, or negative and smaller than ´m.
Therefore, there are branch cuts on the imaginary axis, starting at ˘im. This means that the
integrand is discontinuous across this line:

lim
εÑ0

|p⃗|ei|p⃗|r

b

|p⃗|
2

`m2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|p⃗|“im`ε

­“ lim
εÑ0

|p⃗|ei|p⃗|r

b

|p⃗|
2

`m2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|p⃗|“im´ε

(179)

The branch cuts start in the singular branch points at |p⃗| “ ˘im. In the presence of a branch cut,
we shift the integration contour upwards, so that it wraps around the branch cut, but never crosses
it. The difference between the original contour and this contour vanishes because of Cauchy’s
theorem: Due to Cauchy’s residue theorem, the integral along the curve C “ 1 ` 2a ` 3 ` 2b

vanishes, because there’s no singularity that is enclosed. In addition, the integrals along 2a and

2b (which are meant to lie at infinity) vanish. Thus, the integral along 1 is equal to the integral
along 3 (followed from right to left).
Because we saw previously that

?
z differs by an overall sign across the branch cut, the integral
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branch cuts are usually 
indicated by zig-zaging lines

-
original contour

·
>Relpl

-V
along the right and the left part of the branch cut add up and we obtain

Dpx´ yq

ˇ

ˇ

ˇ

ˇ

px´yq2ă0
“

´i

2p2πq2 |r⃗|lim
ϵÑ0

¨

˝

ż im`ϵ

i8`ϵ

d|p⃗|
|p⃗|ei|p⃗||r⃗|

b

|p⃗|
2

`m2
`

ż i8´ϵ

im´ϵ

d|p⃗|
|p⃗|ei|p⃗||r⃗|

b

|p⃗|
2

`m2

˛

‚

“
´i

p2πq2 |r⃗|

ż i8

im

d|p⃗|
|p⃗|ei|p⃗||r⃗|

b

|p⃗|
2

`m2

“
1

p2πq2
1

|r⃗|

ż 8

m

dρ ρ
e´ρ|r⃗|

a

ρ2 ´m2
, (180)
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where in the last step we defined ρ “ ´i|p⃗|.
We are only interested in the behavior at rm " 1, i.e., distances large compared to the scale set by
the mass, in which case the integrand is suppressed for all values of ρ, except for the point ρ “ m.
Thus we obtain

Dpx´ yq

ˇ

ˇ

ˇ

ˇ

px´yq2ă0

|r⃗|m"1
“ e´m|r⃗|. (181)

Thus, there is a nonzero probability amplitude for a particle to propagate outside the lightcone.
This seems worrisome. Does this mean that our theory violates causality? The answer is no,
because this does not affect measurements, i.e., it is a property of the theory we can never test in
an experiment (or use for faster-than-light signalling). In fact,

rϕpxq, ϕpyqs “ Dpx´ yq ´Dpy ´ xq “ 0 for px´ yq2 ă 0. (182)

Thus, the quantum amplitude for the particle to propagate over a spacelike distance from y to x
interferes destructively with the quantum amplitude for a particle to propagate from x to y. Such a
destructive interference makes sense, because, if x and y are spacelike to each other, the temporal
order of the two is not fixed and can be changed. Therefore, it is equally viable to consider
propagation from x to y as it is from y to x and thus both processes occur. Their quantum
amplitudes cancel when we consider a measurement.
Note that this would be different, if x and y were timelike to each other, because then only one
direction of travel makes sense; the other one would be against the direction of time.
In a complex scalar theory, it gets even more interesting, because we can consider the commutator

“

ϕpxq, ϕ:pyq
‰

“ x0|ϕpxq ϕ:pyq |0y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

describes particle
propagating from

y to x

´ x0|ϕ:pyq ϕpxq |0y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
describes antiparticle

propagating from
x to y

. (183)

This is a profound result: it tells us that antiparticles must exist for QFT to be causal. It is not
a choice to have or not have antiparticles. They are a necessity for a causal theory. (In the case
of a real scalar field we did not see that clearly, because an uncharged scalar, described by a real
scalar field, is its own antiparticle.)
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4 Path-integral quantization for the scalar field

(See Gelis, Ryder, Franklin, Srednicki)
This approach to quantum physics places the superposition principle - that more than one clas-
sical realization of a system is realized at the same time - center stage. For a single particle, it
means that if it is in a momentum eigenstates, it is in a superposition of position eigenstates, e.g.,
completely delocalized. For a field, it means that the relevant entity is not a single configura-
tion of the scalar field (which we can associate to particles at some positions). Rather, all field
configurations which are compatible with boundary of initial conditions are realized at the same
time and interfere destructively or constructively. In terms of particles, this means that we never
have a constant number of particles, but that in addition to the real particles, there are virtual
particles in our theory, which are only there for short amounts of time, before they disappear again.

Mathematically, instead of working with operators on a Hilbert space, we work with functionals,
i.e., maps from the space of functions (field configurations) to the real (complex) numbers. We
will introduce the necessary mathematical concepts as we go along and partially in the exercises.

Conceptually, besides providing a different (complementary) intuition about QFT than the canon-
ical formalism, the path-integral formalism is also manifestly Lorentz invariant.

In Quantum Mechanics and in Quantum Field Theory, the canonical formalism and the path-
integral formalism are equivalent. In quantum gravity, the situation is unclear. There are ap-
proaches to quantum gravity, in which spacetime as a whole is quantized in such a way that a
Hamiltonian cannot be written down, just an action and a path integral (e.g., causal set theory).

Our plan for the next few lectures is to:

• derive path integral for QM

• generalize path integral to QFT

• introduce interactions

• first application: introduce interactions and understand the effect of quantum fluctuations:
symmetry breaking in the one-loop effective potential.

4.1 Path-integral for Quantum Mechanics

We will now derive an expression for the probability amplitude for a particle to propagate from
position qi to position qf that is a superposition of all paths, each one weighted with a complex
amplitude that results in (constructive or destructive) interference between paths.
Consider QM for a single classical degree of freedom, described by the Hamiltonian

H “
P 2

2m ` V pQq, (184)

with momentum operator P and position operator Q, and commutator rQ,P s “ i. The probability
for the particle to start at the initial position qi and end at the final position qf after time tf ´ ti
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is given by:
ˇ

ˇ

ˇ
xqf | e´iHptf ´tiq |qiy

ˇ

ˇ

ˇ

2
. (185)

We will derive the path-integral expression for the amplitude. The intuition underlying the path
integral can be obtained by starting from the double slit, in which this transition has two major
contributions, one from each path, see left panel in Fig. 3. Then we imagine generalizing the 2
slits to n slits and the one barrier to m barriers, see right panel in Fig. 3.

9f
9i ·

Figure 3: Left panel: we show the two possible paths in the double-slit experiment. Right panel:
we show the generalization to m barriers with n slits in each and a subset of all possible paths in
this setup.

As we take n Ñ 8 and m Ñ 8, we obtain all possible paths between qi and qf that a freely
propagating particle can take, see Fig. 4.

-·
·.gi

zu
Figure 4: The generalization contains all possible paths that we can imagine, some of which are
shown in this sketch to illustrate the concept.

This is what the propagating particle (in a potential V pQq) does. Just like the two paths interfere
in the double-slit setup, all paths for the freely propagating particle interfere. As it turns out,
paths far away from the classical path interfere destructively, so that the transition probability
amplitude is dominated by the classical path and fluctuations around it.

Before we derive the expression for the path integral and the expression for the quantum amplitude
associated to each path, we can already develop some intuition for what the result should be. We
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take the following steps in our argument that motivates the result:

1) We are looking for a quantum amplitude, i.e., a quantity that can in general be complex
and whose absolute value can never exceed 1, so that it has a probability interpretation.
This suggests that we can write the quantum amplitude as expri As, with some A that we
need to determine and that is real and depends on the path that we are considering, i.e.,
A “ Arpaths.

2) We consider how constructive and destructive interference between different paths can be
encoded in this quantity: if we compare the quantum amplitudes expri Arpathss for two
different paths, and they differ exactly by their sign, then they cancel in the final expression.
In contrast, if the amplitudes are close to each other in their value in the complex plane,
then they contribute to the final expression.

3) We consider the classical path for the freely propagating particle. We know from Quantum
Mechanics lectures that the expectation value of the position of the particle should follow the
classical path. Therefore, we want that expri Arpathss varies slowly across different paths
that are close to the classical one. This already gives us a hint, what Arpaths could be,
because we know that the action has an extremum for the classical path and therefore varies
slowly for paths close to it.

4) We cross-check our expectation that expri Srpathss, with S the action, could be a good
candidate for the quantum amplitude for each path with the expectation that A should be a
Lorentz-invariant expression, which S indeed is.

This line of reasoning leads us to a well-motivated expectation that the path integral may contain
a factor ei S for each path that will be included.
Of course this is absolutely not a derivation; it’s just a way to obtain some intuition for what we
might expect. We will now do a proper derivation of the path integral.
For the derivation, our ultimate goal is to start from the transition amplitude, written in terms of
operators acting on states, and convert it into a (function) integral over all paths, where each path
is weighted by a quantum amplitude that is a complex number, not an operator. Thus, the steps
of our derivation will be aimed at getting rid of operators and exchanging them for eigenvalues.
We subdivide the time interval rti, tf s into N small time intervals, so that we can keep track of
what the particle does in the small intervals. We introduce

∆ “
tf ´ ti
N

, tn “ ti ` n∆, (186)

so t0 “ ti, tN “ tf , so that we can write the transition amplitude in terms of the many intermediate
positions.
Now we can factorize

e´iHptf ´tiq “ e´iHptN ´tN´1qe´iHptN´1´tN´2q . . . e´iHpt1´t0q, (187)

which is possible because H at successive times commute. Between these successive factors on the
right-hand-side, we can insert the identity operator as a sum over position eigenstates, in order to
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express the transition amplitude in terms of the positions at successive times:

1 “

ż 8

´8

dq |qyxq| . (188)

Because we will need the identity operator multiple times, and it would lead to confusion if each of
the dummy integration variables was called q, we will instead introduce dummy variables qj with
j “ 1, 2, . . . for the identity operator inserted at successive times t1, t2, . . . . This will eventually
allows us to convert the V pQq in H into V pqnq, the position at time tn.

xqf | e´iHptf ´tiq |qiy “

ż N´1
ź

j“1
dqj xqf | e´iH∆ |qN´1y xqN´1| e´iH∆ |qN´2y . . . xq1| e´iH∆ |qiy . (189)

Because the time interval consists of N parts, there are N ´ 1 factors of 1 to insert inbetween
successive factors of e´iH∆. Now, there is a slight complication, namely that the two terms in H,
P 2

2m and V pQq, do not commute, because rQ,P s “ i. This makes it difficult to split eiH∆ into ei P 2
2m

and eiV pQq and use eiV pQq |qny “ eiV pqnq |qny.
However, we can use a trick: We can use the Baker-Campbell-Hausdorff-formula:

e∆pA`Bq “ e∆Ae∆Be´ ∆2
2 rA,Bs`Op∆3

q. (190)

For ∆ Ñ 0 (i.e., N Ñ 8), the ∆2 - and all higher-order factors are negligible. Then, in the limit
∆ Ñ 0, we can use

xqi`1| e´i∆H |qiy “ xqi`1| e´i∆ P 2
2m e´i∆V pQq |qiy ` Op∆2q (191)

“ xqi`1| e´i∆ P 2
2m e´i∆V pqiq |qiy ` Op∆2q. (192)

This contains the eigenvalue qi of the position operator, but it still contains the momentum operator
P itself. To convert it into its eigenvalue, we insert the identity operator written in terms of
momentum eigenstates

ż

dp

2π |pyxp| “ 1. (193)

Just like for the position operator, we will use a dummy integration variable labelled by the time
at which we insert the identity into the whole expression. Thus we obtain

xqi`1| e´i∆H |qiy “

ż

dpi
2π xqi`1| e´i∆ pi

2m |piy e
´i∆V pqiq xpi|qiy ` Op∆2q. (194)

We already exchanged the operators in our expression for their eigenvalues, thus we can also pull
the factor e´i∆ pi

2m out of the matrix element. However, we still have states, which we want to
exchange for (complex) numbers next. Thus, we use that

xq|py “ eipq, (195)

and arrive at
xqi`1| e´i∆H |qiy “

ż

dpi
2π e

´i∆Hppi,qiqeipipqi`1´qiq ` Op∆2q. (196)

Note that Hppi, qiq is now a number, no longer an operator and the right-hand side in general no
longer contains operators (just their eigenvalues), nor states.
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Figure 5: We illustrate the position of the particle at consecutive moments in time, as it enters
the expression (197). There is no actual “path”; the connecting lines between the points are just
to guide the eye. The “paths” are not continuously differentiable.

It remains to interpret e´i∆Hppi,qiqeipipqi`1´qiq. To do so, we next note that qi`1´qi

∆ “ 9qi is the
discretization of the time-derivative of qi. Overall, we thus have

xqf | e´iHptf ´tiq |qiy “ lim
NÑ8

˜

ż N´1
ź

j“1
dqj

¸˜

N
ź

j“1

dpj
2π

¸

e´i∆Hppj ,qj qei∆pj 9qj . (197)

Let us illustrate this expression, see Fig. 5. Note that there are N ´ 1 integrations over qj , because
we inserted a ⊮ expressed in position eigenstates inbetween each of the factors of ei∆H . This gives
rise to N matrix elements of the form xqi`1| e´i∆H |qiy and we insert a ⊮ expressed in terms of
momentum eigenstates inside each such matrix elements, so that we end up with N integrations
over pj .
Taking the N Ñ 8 limit, we see that e´i∆Hppi,qiq will become e´i

ştf
ti
dtHppptq,qptqq (and similarly

for the other factor in the exponential. We thus obtain

xqf | e´iHptf ´tiq |qiy “ N
ż

qptiq“qi

qptf q“qf

DpptqDqptq ei
ştf
ti
dt ppptq 9qptq´Hpp,qqq, (198)

where we introduced a normalization N . This is the path-integral representation of the transition
amplitude in its phase-space form. The measures Dpptq and Dqptq indicate that we are not in-
tegrating over numbers dp, dq, but over functions qptq and pptq. The path-integral is therefore a
functional integral.

Comments:

• There are no initial and final conditions on the momentum, because the position is sharp at
beginning and end, and so the momentum must be totally unconstrained.

• The right-hand-side contains ordinary commuting numbers, while the light-hand-side con-
tains operators.

• We derived the path integral from the canonical formulation of QM. However, we may also
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“forget” about this origin and view the path integral as the definition of the quantum theory.

• The physical intuition behind the path integral is that all possible phase-space configurations
tpptq, qptqu are realized simultaneously and each is weighted by a phase factor ei

ş

dt pp 9q´Hq,
which encodes quantum mechanical interference.

• The functional measure DqptqDpptq in general lacks a solid mathematical foundation. Nev-
ertheless, the formalism allows us to make progress in QFT, where the canonical formalism
would prove extremely challenging and cumbersome. Wherever both formalisms can be used
in practical calculations, they produce results that are in agreement.

In QFT, the form of the path integral that is used most is not a phase-space path integral, but
one, where the momentum-integration has already been performed.
This can be done in theories in which the momentum only occurs quadratically, as we have assumed.
In this case, we can perform the integral over pptq, because it is a Gaussian functional integral.
We generalize

ż 8

´8

dx e˘ ix2
2σ “

?
2πσe˘iπ

4 . (199)

(Note that this looks as if we took
ş8

´8
dx e´ x2

2σ “
?

2πσ and simply made it complex. This is not
the case. The correct derivation relies on the integral along the real axis, but then uses Cauchy’s
residue theorem.)

To use this, we go back to the path integral before taking the N Ñ 8 limit. We treat each pi as
an independent variable and perform the Gaussian integral to obtain

ż

Dp ei∆pp 9q´
p2
2m q “ ei

π
4

c

2πm
∆´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

this prefactor is
independent of q, 9q

ei
∆m 9q2

2 . (200)

We absorb the prefactor into the (undetermined) normalization constant N . We will soon see that
N drops out of computing observables. Therefore, it does not matter that N contains a factor that
diverges for ∆ Ñ 0. We thus arrive at the path integral in the form

xqf | e´iHptf ´tiq |qiy “

ż

qptiq“qi

qptf q“qf

Dqptq ei
ştf
ti
dt Lpqptqq, (201)

because L “
m 9q2

2 ´ V pqq. Therefore,

xqf | e´iHptf ´tiq |qiy “

ż

qptiq“qi

qptf q“qf

Dqptq eiSrqptqs. (202)

This is also known as the Feynman-Kac-formula.

4.2 Classical action, least-action principle

We have worked with ℏ “ 1, so let us briefly reinstate ℏ. We know that rSs “ rℏs and we know
that the argument of the exp cannot contain units. Thus, without redoing the calculation with ℏ
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back in place, we know that the result has to be

xqf | e´iH
ℏ ptf ´tiq |qiy “

ż

qptiq“qi

qptf q“qf

Dq e i
ℏSrqs. (203)

The rhs is a wildly oscillatory integral, with the following properties:

1) e
i
ℏS is a pure phase factor, i.e.,

ˇ

ˇ

ˇ
e

i
ℏS

ˇ

ˇ

ˇ
“ 1 for all qptq.

2) If Srqptqs changes slowly over neighboring paths, these contribute with a similar phase to the
overall integral, i.e., they interfere constructively.

3) If Srqptqs changes rapidly across neighboring paths, we find that the contributions cancel
each other, because they, roughly speaking, contribute with opposite sign.

Mini-Exercise 10. Based on properties 2) and 3), argue why you would expect a main
contribution to the path integral from the classical paths, i.e., those paths that satisfy the
classical equations of motion, and paths close to them.

Solution. Classical paths satisfy δS “ 0, i.e., the action varies slowly.

4.3 Time-ordered products and generating functional

Before we make the transition to QFT, we need to develop a few more tools. With the QFT-
application in mind, we will in particular develop those tools useful in QFT, which may not be the
most important quantities in QM. Thus, why we are focusing on the specific quantities that we
are will become clearer later in the course. For now we are just developing a toolbox, and we will
come back to asking physical questions soon. When we will do so, we will have the tools available
to answer them.
We are not only interested in transition amplitudes, but also in other quantities, e.g., expectation
values. We will now see that these also have a path-integral representation. Consider the matrix
element

xqf | e´iHptf ´tI qQe´iHptI ´tiq |qiy , (204)

which measures the amplitude for the transition between qi and qf withQ acting at the intermediate
time tI , with ti ă tI ă tf . To evaluate this, we write

Q “

ż

dq dq1 |qy xq|Q
ˇ

ˇq1
D

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
q δpq´q1q

@

q1
ˇ

ˇ (205)

“

ż

dq q |qyxq| . (206)

By repeating the remainder of our previous path-integral derivation, but with this insertion, we
arrive at

xqf | e´iHptf ´tI qQe´iHptI ´tiq |qiy “

ż

qptiq“qi

qptf q“qf

Dq qptIqeiSrqs. (207)

Similarly, we can consider several Q1s inserted at different times. In QM, these are not necessarily
the quantities we are most interested in. However, as we will see later in the course, when we discuss
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the scattering of particles, the analogous expressions in QFT are central to the theory. Thus, we
check that they can be written in terms of the path integral in QM. If we have Qpt1qQpt2q, with
Qptq “ eiHtQe´iHt, we see that the order of the Q1s matters, because Q does not commute with
the P 2-term inside H. Thus we consider the time-ordered products

TQpt1qQpt2q “

$

&

%

Qpt1qQpt2q, if t1 ě t2

Qpt2qQpt1q, if t2 ą t1
(208)

(with Qptq “ eiHtQe´iHt and |q, ty “ eiHt |qy.)
We have, by the same procedure of inserting Qpt2{t1q in the derivation,

xqf , tf |T pQpt1qQpt2qq |qi, tiy “

ż

qptiq“qi

qptf q“qf

Dq qpt1qqpt2qeiSrqs. (209)

Note that the right-hand-side contains commuting numbers qpt1q, qpt2q, thus the time-ordering on
the left is crucial for the equality, because otherwise we would have to account for extra commu-
tators that have no counterpart on the right-hand-side. The generalization to n factors is direct

xqf , tf |T pQpt1q . . . Qptnqq |qi, tiy “

ż

qptiq“qi

qptf q“qf

Dq qpt1q . . . qpt2qeiSrqs. (210)

In QM, these are not necessarily the matrix element that are most interesting for us. In QFT,
however, the generalization qptq Ñ fieldptq with such time-ordered correlators will be absolutely
crucial. Therefore, it will be very useful to us to “package” all such matrix elements with n factors
into a generating functional

Zfir jptq
Ò

source

s “ xqf , tf |Tei
ştf
ti
dt jptqQptq

|qi, tiy , (211)

from which
xqf , tf |T pQpt1q . . . Qptnqq |qi, tiy “

δnZfirjs

inδjpt1q . . . δjptnq

ˇ

ˇ

ˇ

ˇ

j“0
. (212)

The path-integral representation of the generating functional is

Zfirjptqs “

ż

qptiq“qi

qptf q“qf

Dq eiS`i
ştf
ti
dt jptq qptq. (213)

4.4 Functional differentiation

Above we have introduced functional derivatives, denoted by δ
δjptq , which are derivatives with

respect to a function, not with respect to a c-number quantity. Instead of dx
dx “ 1, it therefore

holds that
δfpxq

δfpx1q
“ δpx´ x1q, (214)

with δpx´ x1q being the “1” in the space of functions.
More formally, just like the limit of a finite difference defines a standard derivative, we can define
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a functional derivative of the functional F rϕs by:
ż

dx
δF rϕs

δϕpxq
ϵpxq ` Opϵ2q “ F rf ` ϵs ´ F rf s, (215)

where ϵpxq is understood as a small change of ϕpxq, i.e., it should be small everywhere (and possibly
with compact support).
We denote functionals by angular brackets around their arguments (which are functions). Note
that a functional maps a function to a number. The action Srϕs is a good example: It takes a
function ϕpxq, and, by integrating its Lagrange density Lpϕq (which is itself a function of x through
its dependence of ϕ and its derivative at each individual point), maps the whole configuration ϕ

to a single number.
Based on the definition Eq. (215), we can derive that

δ

δϕpyq
ϕpxq “ δdpx´ yq, (216)

as follows (we’ll write the derivation for d “ 1): We consider the particular functional

Fδrf s “

ż 8

´8

dx δpx´ yqfpxq. (217)

From the definition Eq. (215), it follows that
ż

dx
δFδrf s

δfpxq
ϵpxq “

ż 8

´8

dx δpx´ yqpfpxq ` ϵpxqq ´

ż 8

´8

dx δpx´ yqfpxq “ ϵpyq. (218)

For the left-hand side to be equal to the right-hand-side, it must hold that

δFδrf s

δfpxq
“ δpx´ yq. (219)

Thus we have that

δpx´ yq “
δFδrf s

δfpxq
“

δ

δfpxq

ż 8

´8

dx δpx´ yqfpxq “
δ

δfpxq
fpyq. (220)

For functional derivatives, there is a product rule

δ

δϕpxq
pF rϕsGrϕsq “

δF rϕs

δϕpxq
Grϕs ` F rϕs

δGrϕs

δϕpxq
, (221)

and a chain rule
δ

δϕpxq
F rGrϕss “

ż

dy
δF rGs

δGpyq

ˇ

ˇ

ˇ

ˇ

G“Grϕs

δGrϕpyqs

δϕpxq
. (222)

Mini-Exercise 11. Check that

´i
δZfirjptqs

δjpt1q

ˇ

ˇ

ˇ

j“0
“

ż

qptiq“qi

qptf q“qf

Dq ei Srqsqpt1q. (223)
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Solution.

´i
δZfirjptqs

δjpt1q

ˇ

ˇ

ˇ

j“0
“ ´i

δ

δjpt1q

ż

qptiq“qi

qptf q“qf

Dq eiS`i
ş

dt jptq qptq
ˇ

ˇ

ˇ

j“0
(224)

“ ´i

ż

qptiq“qi

qptf q“qf

Dq i
ˆ
ż

dt δpt´ t1qqptq

˙

eiS`i
ş

dt jptq qptq
ˇ

ˇ

ˇ

j“0
(225)

“

ż

qptiq“qi

qptf q“qf

Dq qpt1qeiS (226)

4.5 Projection onto the ground state at asymptotic times

Suggested reading for this section: Sec. 5.5 in Ryder; QFT I+II lecture notes from Heidelberg
U. by Timo Weigand...
In QM, we typically care about transition states between states that are not the ground state. In
QFT, for many problems, we are actually interested in a vacuum-to-vacuum transition amplitude,
or the correlators evaluated in the ground state. The reason is twofold:
First, as we already had a glimpse of when we discussed the Casimir effect, already the vacuum
(or ground state) is quite non-trivial in a QFT.
Second, we often care about a description of particle scattering events (e.g. at the LHC, or in a
cosmic-ray shower, or in the IceCube neutrino detector. . . ), where the particle(s) of interest are
created (e.g., by collision), they interact and then they are destroyed (e.g. by detection).
The act of creation may be represented by a source and that of destruction (which is also, in
some sense, a source). The boundary conditions of the problem may then be represented as in
the following figure, where the vacuum at t “ ´8 evolves into the vacuum at t Ñ `8, via the
creation, interaction and destruction of particles, through the agency of a source. We are thus

particles destroyed

particles created

-

-

Figure 6: We sketch the idea behind the source acting over a finite amount of time.
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interested in
x0,8|0,´8y . (227)

How do we obtain it from

@

Q1, T 1
ˇ

ˇQ,T
D

“

ż

qpT 1
q“Q1

qpT q“Q

Dq ei
şT 1

T
dt pL`Jqq ? (228)

We will consider this still in QM and then generalize to QFT.
We assume J “ Jptq and J “ 0 for t ă t2 and t ą t1, with T ă t2 and t1 ă T 1, i.e., the source is
switched on after the asymptotic time T and switched off before the asymptotic time T 1.
To distinguish whether the source is present or not, we write xq1, t1|q2, t2y

J if J is nonzero for (part
of) the time inbetween t1 and t2, t2 ă t ă t1 and otherwise, we leave out the J . Thus we consider

@

Q1, T 1
ˇ

ˇQ,T
D

“

ż

dq1 dq
@

Q1, T 1
ˇ

ˇq1, t1
D @

q1, t1
ˇ

ˇq, t
DJ

xq, t|Q,T y . (229)

We can write
@

Q1, T 1
ˇ

ˇq1, t1
D

“
@

Q1
ˇ

ˇ e´iHT 1

eiHt
1 ˇ

ˇq1
D

, (230)

where we used |q, ty “ e´iHt |qy.
We ultimately want to rewrite this into an expression containing the ground state and so it makes
sense to use a complete set of energy eigenstates next. We write this as

ˇ

ˇq1, t1
D

“
ÿ

n

eiHt
1

|ny
@

n
ˇ

ˇq1
D

“ |0y
@

0
ˇ

ˇq1
D

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
assuming E0“0

`
ÿ

|ny­“|0y

eiEnt
1

|ny
@

n
ˇ

ˇq1
D

. (231)

For simplicity, we symbolize the energy eigenstates by the label “n” and write a sum over them.
It doesn’t matter for our derivation if they are actually continuous.
This leads to

@

Q1, T 1
ˇ

ˇq1, t1
D

“
ÿ

n

xn| eiEnpt1
´T 1

q |ny xQ|nyxq1|ny (232)

“ x0|0y
@

Q1
ˇ

ˇ0
D @

0
ˇ

ˇq1
D

`
ÿ

|ny­“|0y

xn| eiEnpt1
´T 1

q |ny
@

Q1
ˇ

ˇn
D @

n
ˇ

ˇq1
D

. (233)

To isolate the contribution from the vacuum state, which is the one that we are interested in, we
change T 1 Ñ 8p1 ´ iεq and T 2 Ñ ´8p1 ´ iεq, with ε ą 0. Then,

eiEnpt1
´T 1

q Ñ eiEnpt1
´T 1

p1´iεqq “ eiEnpt1
´T 1

q´εT 1En . (234)

The term „ ε is an exponential suppression factor. In the limit T 1 Ñ 8, it results in a suppression
of all states that are not the ground state. Thus, we obtain

lim
T 1

Ñ8p1´iεq

TÑ´8p1´iεq

@

Q1, T 1
ˇ

ˇQ,T
D

„ x0,8|0,´8y , (235)

or, in terms of the path integral:

x0,8|0,´8y “ N
ż

Dq ei
ş

8

´8 pL`Jq` 1
2 iεq

2q. (236)
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Note that we have dropped proportionality factors, that we just absorb in the overall normalization
of the path integral. They drop out of physical observables.
Similarly, for vacuum expectation values of operators, we have a similar path integral. It doesn’t
have any boundary conditions; it is simply the path integral over all functions.

4.6 Path integral in quantum field theory

The path-integral formalism can be generalized from QM to QFT. It provides a framework that
in many cases is easier to deal with (e.g., when formulating the theory of the strong interactions,
QCD). Also, it provides a conceptually different way of thinking about QFT, where, just like in
the multi-split-setup in QM, all field configurations are realized at the same time and interfere
destructively and constructively.
We generalize from QM to QFT by

qptq Ñ ϕpxq (237)

pptq Ñ Πpxq (238)

jptq Ñ jpxq. (239)

Herein, the arguments x of the fields and source are understood as spacetime arguments, i.e., ϕ
etc. depend on spatial coordinates and time.
The main results from QM generalize and we obtain a generating functional

Zrjs “

ż

DΠpxqDϕpxq ei
ş

d4x pΠpxq 9ϕpxq´p1´iεqH`jpxqϕpxqq. (240)

Because H is quadratic in Πpxq,

H “
1
2Π2 `

1
2 p∇ϕq

2
`

1
2m

2ϕ2 ` V pϕq, (241)

we can perform the Gaussian functional integral over Πpxq and obtain

Zrjs “

ż

Dϕpxq ei
ş

d4x pLpϕq`jpxqϕpxqq “

ż

Dϕ eiS`i
ş

jϕ. (242)

The generating functional generates correlation functions, which are expectation values of the field
at different spacetime points. Just as in the case of Quantum Mechanics, these are time-ordered
correlators.

xTϕpx1q . . . ϕpxnqy “ in
δ

δjpx1q
. . .

δ

δjpxnq
Zrjs “

ż

Dϕϕpx1q . . . ϕpxnqeiS`i
ş

jϕ. (243)

(We do not care about normalization factors at this point.) These correlation functions tell us
about the expectation value of the field in the vacuum and the correlations between field values at
different points. When we remember that in the canonical formalism, ϕpxq acting on the vacuum
generates a particle, we can see that the correlators give us information on the amplitude for a
particle to propagate from one point to another (for xϕpxqϕpyqy) and the amplitudes for three,
four etc particles to interact. Therefore, these correlation functions will later become important,
when we describe particle scattering in quantum field theory. We will come back to them later and
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develop a better and more detailed understanding of them.
Let us contrast classical field theory and quantum field theory: Classically, a single field configu-
ration ϕclasspxq is realized, for which

δS

δϕ

ˇ

ˇ

ˇ

ˇ

ϕ“ϕclass

“ 0. (244)

In QFT, all field configurations are realized at the same time. Each comes with a complex phase fac-
tor eiSrϕs, that results in destructive/constructive interference between field configurations. When
S varies slowly, the interference is constructive, because “neighboring” configurations have nearly
the same phase factor eiS . Thus, we expect that a main contribution to the path integral actually
comes from the classical field configurations. In contrast, field configurations far from the classical
ones have a quickly varying phase factor eiS , which oscillates between `1 and ´1 quickly, and thus
these cancel out or interfere destructively.
Overall, the path integral formalism provides a different, and highly useful, intuition for the physics
of QFT, as well as a powerful formalism.
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5 The quantum effective action ΓrΦs and interacting quan-
tum field theory

(See Gelis, Ryder, Padmanabhan . . . )
In QFT, classical field configurations lose their meaning, because no single field configuration is
ever realized (see the discussion above). However, the expectation value xϕy “

ş

Dϕ ϕ eiSrϕs has
physical meaning, as do the n-point correlation functions xϕpx1q . . . ϕpxnqy.
Therefore, just like S produces the classical equations of motion, we would like to have a “quantum
version” that gives the equations of motion for the expectation value xϕy.
We will call this (at this stage hypothetical) object ΓrΦs, where we have introduced the notation
Φ “ xϕy, to clarify that the argument of Γ is not an individual classical field configuration, because
Γ must actually arise from the path integral.

Let us define
eiΓrΦs`i

ş

d4x jpxqΦpxq “

ż

Dϕ eiSrϕs`i
ş

d4x jpxqϕpxq, (245)

because then ΓrΦs appears analogously to Srϕs (in a complex exponential) and, if we would “switch
off” quantum fluctuations, i.e., only have a contribution from the classical field configurations, then
ΓrΦs “ SrΦs.
In fact, this definition implies that

ΓrΦs “ ´i lnZrjs ´

ż

d4x jpxqΦpxq, (246)

i.e. ΓrΦs is the Legendre transform of lnZrjs.

Mini-Exercise 12. Check that this expression for ΓrΦs follows from our definition above.

Solution.

eiΓrΦs`i
ş

d4x jpxqΦpxq “

ż

Dϕ eiSrϕs`i
ş

d4x ϕpxqjpxq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Zrjs

“ñ ln
´

eiΓrΦsei
ş

d4x jpxqΦpxq
¯

“ lnZrjs

iΓrΦs ` i

ż

d4x jpxqΦpxq “ lnZrjs

“ñ ΓrΦs “ ´i lnZrjs ´

ż

d4x jpxqΦpxq.

From there, we obtain
δΓrΦs

δΦ “ ´jpxq. (247)

This is the quantum analogue of the classical equations of motion. It gives us the equations of
motion for the expectation value Φ.
Effective action as Legendre transform:
Let us be a bit more precise about the definition of ΓrΦs as the Legendre transform of lnZrjs.
First, we review what a Legendre transform of a function fpxq is. (Useful reading for this is this
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reference). Let the derivative of fpxq be p, i.e.,

df

dx
“ p. (248)

In our case, this would be a functional version of such an equation, namely δ
δjpxq

Zrjs “ Φ. We are
now interested in obtaining a quantity that takes p as its argument, but contains the information
on the function fpxq, i.e., we are looking for some gppq that arises from fpxq and is in a precise
correspondence to fpxq. We can derive from Eq. (248) that

dpxp´ fpxqq “ x dp` p dx´ df “ x dp. (249)

Thus, by defining
gppq “ sup

x
pxp´ fpxqq , (250)

we have that
dg

dp
“ x. (251)

The supremum means that the right-hand side is evaluated at the value of x, where it takes its
maximal value. This is how gppq depends only on p, and not also on x, as it would be, if we would
leave out the supremum.
In our case, gppq is ΓrΦs, and we note that Eq. (246) should properly read

ΓrΦs “ sup
j

ˆ

´i lnZrjs ´

ż

d4xjpxq Φpxq

˙

. (252)

Let us finish this discussion with an example of the Legendre transform of a function. We consider
fpxq “ x2. Then px ´ fpxq is maximized at x “ p{2, and thus gppq “ px ¨ p´ fpxqq

ˇ

ˇ

ˇ

x“p{2
“

p2{2 ´ p2{4 “ p2{4.
Comment: There’s lots more to say about Γ and we will come back to it in QFT II to develop
our formal and physical understanding of it further.

5.1 Effective potential in scalar λϕ4 theory

(See Gelis, Ryder, Peskin/Schröder, Padmanabhan)

We are now ready to take a first look at an interacting theory. We will learn about the effects of
quantum fluctuations and will also encounter UV divergences again that we have to deal with.
We consider the simplest interacting theory, namely λϕ4

L “
1
2BµϕBµϕ´

m2

2 ϕ2 ´
λ

12ϕ
4. (253)

What is the physical meaning of the ϕpxq4 term? Remember that ϕpxq, understood as an operator,
when acting on the vacuum, produces a one-particle state with the particle localized at x. Thus,
if we act with ϕpxq four times, we describe four particles, all localized at x. This is clearly what
we need in order to describe interacting particles, because, to describe interactions, we must have
several particles, not just a single one.
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Note also that the interaction is local, i.e., particles interact at a single point in spacetime. (An
example for a nonlocal interaction term would be

ş

d4x
ş

d4y ϕpxq2ϕpyq2. There is no QFT with
such interactions, because causality would be impossible to maintain in such a theory.) Local
interactions are what we observe in nature (e.g., at particle colliders, interactions happen when
particles meet at a point, they do not happen over a distance) and thus we use local interaction
terms in Lagrangians.
We exclude the ϕ3-term by a ϕ Ñ ´ϕ symmetry (Z2 symmetry) and we neglect other interac-
tions (ϕ6, BµϕBµϕ ϕ2 etc.) for now. ϕ4 is an interaction term, because it yields a non-linear term
in the equations of motion, i.e., instead of a freely propagating wave-like solution, we have self-
interactions. In terms of the corresponding particles, we can have scattering of the particles off
each other.

The path integral for an interacting theory is complicated. It is no longer, as it would be for the
free theory, a Gaussian integral that we can do exactly. Therefore, we will consider an expansion
for it, in which the leading non-trivial correction is also obtained from a term quadratic in the
fields.
We expand around ϕcl “ xϕy. Because we expect that the ground state of the theory respects
translation invariance, ϕcl “ const. This constant may be zero, but, and this will be the more
interesting case, it may also be non-zero. In this case, the Z2-symmetry is broken spontaneously,
i.e., there is a symmetry of the Lagrangian that the ground state breaks. This also happens in the
Higgs sector of the Standard Model and is the mechanism through which the elementary particles
in the SM acquire their mass9.

In Zrjs, we can perform a shift of the integration variable,

Zrjs “

ż

Dϕ eipSrϕs`
ş

jϕq “
Ò

ϕ“ϕcl`φ

ż

Dφ eiSrϕcl`φs`i
ş

jpϕcl`φq. (254)

Now, we can expand S in φ. Intuitively, we can imagine that we are aiming at calculating the impact
of small quantum fluctuations around ϕcl, i.e., we account for the effect of field configurations close
to ϕcl.
We set j “ δS

δϕ

ˇ

ˇ

ˇ

ϕ“ϕcl
, so that the source only sources the classical field. Then,

Srϕcl ` φs `

ż

d4x jpϕcl ` φq (255)

“Srϕcls `

ż

d4y
δS

δϕpyq

ˇ

ˇ

ˇ

ˇ

ϕ“ϕcl

φpyq `
1
2

ż

d4y d4z φpyq
δ2Srϕs

δϕpyqδϕpzq

ˇ

ˇ

ˇ

ˇ

ϕ“ϕcl

φpzq

` . . .`

ż

d4x jpϕcl ` φq. (256)

Because of j “ δS
δϕ

ˇ

ˇ

ˇ

ϕ“ϕcl
, the term linear in φ and the source term with φ cancel. We evaluate the

δ2S term as a mini exercise.

9The QCD bound states, such as the proton and neutron, acquire most of their mass through another spontaneous
symmetry breaking due to the strong-coupling regime that QCD enters at low energies.
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Mini-Exercise 13. Evaluate

1
2

ż

d4y d4z φpyq
δ2Srϕs

δϕpyqδϕpzq

ˇ

ˇ

ˇ

ˇ

ϕ“ϕcl

φpzq. (257)

Solution. We obtain (l “ BµBµ)

δ

δϕpyq

δ

δϕpzq

ż

d4x

ˆ

´
1
2ϕpxqlϕpxq ´

1
2m

2ϕ2pxq ´
λ

12ϕ
4pxq

˙
ˇ

ˇ

ˇ

ˇ

ϕ“ϕcl

“

ż

d4x
´

´
1
2δ

4px´ yql δ4px´ zq ´
1
2δ

4px´ zql δ4px´ yq

´m2δ4px´ yqδ4px´ zq ´ λϕ2pxqδ4px´ yqδ4px´ zq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ϕ“ϕcl

“ ´ l δ4py ´ zq ´m2δ4py ´ zq ´ λϕ2
clδ

4py ´ zq.

We can write this as ´pl ` V 2pϕclqqδ4py ´ zq, where V 2 “ d2V
dϕ2 . Thus,

Zrjs “

ż

Dφ eiSrϕcls´i 1
2
ş

d4y d4z φpyqrpl`V 2
pϕclqqδ4

py´zqsφpzq`i
ş

d4x jϕcl (258)

“ eiSrϕcls`i
ş

d4x jϕcl

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
independent of φ,

can therefore be pulled out
of the path intergral.

ż

Dφ e´i 1
2
ş

d4y φpyqpl`V 2
pϕclqqφpyq. (259)

Now we need that (for a proof, see the exercises)
ż

Dφ e´ 1
2ϕpxqAϕpxq “ pdetAq

´ 1
2 , (260)

detA “ etr lnA, (261)

pdetAq
´ 1

2 “ e´ 1
2 tr lnA. (262)

This helps us, because this expression also continues to hold if the ”matrix” A is infinitely large,
i.e., we use that
ż

d4x

ż

d4yφpxq
`

l ` V 2
˘

δ4px´ yqφpyq “

ż

d4xφpxqApx, yqφpyq Ð
ÿ

i

ÿ

j

φpxiqAijφpxjq. (263)

Thus,
Zrjs “ eiSrϕcls`i

ş

jϕcle´ 1
2 tr ln p´ipl`V 2

pϕclqqq ` . . . (264)

and finally, we obtain the expression for the one-loop effective action for a constant ϕcl:

Γrϕcls “ Srϕcls `
i

2 tr ln
`

l ` V 2pϕclq
˘

, (265)

where we first calculate ´i lnZrjs to obtain Γ, and where we can drop the “i” inside the ln, because
it only produces a constant addition to Γ which is field-independent and therefore irrelevant for
the physics.
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This expression makes sense in that Γrϕcls “ Srϕcls to leading order. If we reinstate ℏ, then the
tr ln-term is „ ℏ, so it encodes the leading-order quantum correction. This term is called the 1-
loop term, because the tr implies an integration over momenta (the eigenvalues of l) of quantum
fluctuations. When we introduce the expansion in terms of Feynman diagrams later, we will see
that we will denote such an integration by a closed loop.
In the case of ϕcl “ const that we consider here, Γrϕcls “

ş

d4x Veffrϕcls, because the kinetic term
vanishes for this case. Veff is called the effective potential. Our remaining task is to evaluate

i

2 tr ln
`

l ` V 2pϕclq
˘

“
i

2

ż

d4x

ż

d4p

p2πq4 ln

¨

˚

˝

´p2 `m2 ` λϕ2
cl´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

constants

˛

‹

‚

. (266)

ş

d4x just becomes a factor of spacetime volume that also appears before Veff. These drop put of
Veff. To evaluate the integral, we do several things:

• we note that the integral is divergent at large p2. This is again a consequence of us having
simply assumed that our QFT is valid up to arbitrarily small distances (i.e., arbitrarily high
momenta).

• we point out that m2, which we have been calling “mass”, does not actually correspond to
a measurable quantity. Rather, B

2

Bϕ2
cl
V
ˇ

ˇ

ˇ

ϕcl“0
“ m2

Phys is the actual mass that is associated to
the field. If we could turn off ℏ, then m2

Phys would correspond to the mass, but in nature, we
cannot turn off ℏ (or, more physically, we cannot turn off quantum fluctuations).

These two observations combined lead us to the following ideas:

1) The momentum integral should be regularized. The most intuitive way is through a cutoff Λ
in the momentum integral, although there are other ways of regularizing, e.g., dimensional
regularization, that we encounter later.

2) The cutoff (or more generally the regularization) just parametrizes our ignorance of the
correct physics at high momenta (small distances).
The physical results of measurements (e.g., of the mass of a particle or the strength with
which particles interacting) do not care about whether or not we do or do not understand
the UV physics. Therefore,

B2

Bϕ2
cl
Veffpϕclq

ˇ

ˇ

ˇ

ˇ

ϕcl“0
“ m2

Phys (‹1)

B4

Bϕ4
cl
Veffpϕclq

ˇ

ˇ

ˇ

ˇ

ϕcl“0
“ 2λPhys (‹2)

must not depend on the cutoff Λ (or whatever other parameter determines our regularization).
To achieve that (‹1) and (‹2) are independent from Λ, we are led to the conclusion that m2

and λ must be functions of Λ. We are free to make them that, because they are not physical
parameters that we could measure.
Therefore, we will implement the procedure of regularization and renormalization. Note that
“renormalization” is a misnomer, because it suggests that we have already normalized the
theory and now we need to “re”-normalize all parameters by huge (potentially even infinite)
shifts. This is a confusing view of the actual procedure, where we normalize the measurable
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parameters once.
We will later introduce the procedure of renormalization more formally and comprehensively.
For now, our goal is to understand the key idea behind it.
For literature focused on the conceptual idea without a lot of formalism, check out chapter
III in Zee’s Quantum Field Theory in a nutshell.

In practice, we now need to regularize. There are different methods of regularization, e.g., zeta-
function regularization (which is probably the most abstract of the regularization methods typically
used), dimensional regularization (which we will encounter and use later in the course, and which is
a very common method in high-energy physics) and cutoff-regularization. We already encountered
cutoff-regularization when we considered the Casimir effect, and we will use it again here. Arguably,
in cutoff-regularization, it is easiest to understand what is going on.
To perform the regularization, we perform a Wick-rotation to Euclidean signature, i.e., we send

t Ñ iτ, (267)

where τ is Euclidean ”time”, i.e., the ”time” coordinate in a space with a metric with all negative
signs. Then, p2 Ñ ´p2

E , and
ż

d4p

p2πq4 ln
`

´p2 `m2 ` λϕ2
cl
˘

Ñ

ż

d4pE
p2πq4 ln

`

p2
E `m2 ` λϕ2

cl
˘

. (268)

The reason for doing a Wick-rotation is that we can now successfully introduce a cutoff, i.e.,
limit p2

E ă Λ2. In Minkowski signature, p2 ă Λ2 does not effectively work as a cutoff, because
p2 “ p2

0 ´ p⃗2, and thus p2 ă Λ2 still allows arbitrarily high energies p2
0, as long as they come with

an arbitrarily high spatial momentum p⃗2
i .

Thus,
ż

d4pE
p2πq4 ln

`

p2
E `m2 ` λϕ2

cl
˘

“

ż 8

0

dp2
E

32π2 p
2
E ln

`

p2
E `m2 ` λϕ2

cl
˘

Ñ

ż Λ2

0

dp2
E

32π2 p
2
E ln

`

p2
E `m2 ` λϕ2

cl
˘

Ñ

ż Λ2

0

dp2
E

32π2 p
2
E ln

ˆ

p2
E `m2 ` λϕ2

cl
Λ2

˙

. (269)

In the first step, we have used that the integral is rotationally symmetric in momentum space.
In the second step, we have introduced a regularization, that we ultimately would like to remove
again, i.e., we aim at sending Λ2 Ñ 8 to recover the original integral. In the meantime, we are
keeping in mind that the high-momentum part of the integral comes from a regime where we
cannot be sure whether our theory actually describes nature – we have simply extrapolated our
theory to arbitrarily high momenta (arbitrarily small distances). Thus, Λ2 can be given a physical
interpretation in the sense that it cuts off the part of the momentum integral, where some ”new
physics” may be, that our theory does not account for and therefore does not adequately describe
this regime.
In the very last step, we have noted that the argument of the ln is dimensionful (which it should
not be), and have therefore divided by Λ2. This we have achieved by subtracting

şΛ2

0
dp2

E

32π2 p
2
E ln

`

Λ2˘

from the previous expression. We are free to do this, because there is no dependence on the field
in this. We are just subtracting a field-independent constant, which does not contribute to the
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equations of motion (and just shifts the value of the ground-state energy, but has no effect on
measurements, because we can only measure differences in energies.
Now we have an expression that we can evaluate and interpret. We will learn several important
consequences of quantum fluctuations, that are not specific to this particular theory, but rather
generic features of many QFTs.
We obtain
ż Λ2

0

dp2
E

32π2 p
2
E ln

ˆ

p2
E `m2 ` λϕ2

cl
Λ2

˙

“
1

4 ¨ 32π2

”

Λ2 `2m2 ´ Λ2 ` 2λϕ2
cl
˘

` 2Λ4 ln
ˆ

m2 ` Λ2 ` λϕ2
cl

Λ2

˙

´2
`

m2 ` λϕ2
cl
˘2

ˆ

ln
ˆ

m2 ` λϕ2
cl ` Λ2

Λ2

˙

´ ln
ˆ

m2 ` λϕ2
cl

Λ2

˙˙

ı

.

(270)

From there, by collecting all prefactors, and adding the classical contribution, we obtain the effec-
tive potential

Veffpϕclq “
1

4 ¨ 32π2

”

Λ2 `2m2 ´ Λ2 ` 2λϕ2
cl
˘

` 2Λ4 ln
ˆ

m2 ` Λ2 ` λϕ2
cl

Λ2

˙

(271)

´2
`

m2 ` λϕ2
cl
˘2

ˆ

ln
ˆ

m2 ` λϕ2
cl ` Λ2

Λ2

˙

´ ln
ˆ

m2 ` λϕ2
cl

Λ2

˙˙

ı

`
m2

2 ϕ2
cl `

λ

12ϕ
4
cl.

This is a complicated and somewhat lengthy expression, so there is lots to unpack. In fact, there
are also several important physical aspects to learn from this expression that we will go through
in detail below:

1. We see that the effective potential contains terms that have the same field dependence as the
classical terms, but come with prefactors that will diverge if we take Λ2 Ñ 8. One example
is the first term in the first line of Eq. (271), which is 2Λ2 λϕ2

cl. These are the terms that we
will have to deal with through renormalization and that have caused some confusion about
QFT, in particular in the earlier years of the development of QFT. Here, we will not discuss
renormalization in detail, nor introduce all technical details of the renormalization procedure;
we will just take a look at the main ideas. Later in the course, we will study renormalization
in more detail.

2. We also see that, upon expanding the ln-terms, we will obtain higher powers of ϕcl, e.g.,
ϕ6

cl or ϕ8
cl. This is another generic feature of QFTs: quantum fluctuations generate new

interactions. This result is not specific to ϕ4 theory, but appears in virtually all other QFTs.
A well-known, and physically really interesting, example, is Quantum Electrodynamics: one
of the phenomenologically crucial features of classical electrodynamics is that electromagnetic
waves do not interact with each other, i.e., the equations of motion are linear, and accordingly
photons do not interact. If this was different, and the equations would have strong non-
linearities, we would not be able to observe distant galaxies (nor would one be able to see a
black-board from across a lecture room, if the non-linearity was really strong). It turns out
that when we integrate quantum fluctuations of the electron, a four-photon-interaction term
is generated. Therefore, the quantum version of electrodynamics is fundamentally different
from the classical version – at least in principle. In practice, we are saved by the fact
that the photon-photon-interaction term comes with a tiny prefactor, such that one needs
extremely high electromagnetic fields to observe the non-linearities. High-intensity lasers are
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constructed with the goal (among other goals, of course), to observe these terms for the first
time.

The corresponding action, encoding these terms, can be obtained from Quantum Electrody-
namics along exactly the same line as our calculation for the scalar field and is called the
Euler-Heisenberg effective action.

3. It is not obvious from the above expression, but, after we have taken care of the divergences,
the resulting potential is generically no longer minimized at the point ϕcl “ 0. Instead, a
non-zero expectation value of ϕ permeates the vacuum. This is called spontaneous symmetry
breaking (i.e., the ground state does not realize a symmetry of the action; in this case, the Z2

symmetry of the action, under which ϕ Ñ ´ϕ, is not realized by the ground-state, because
the only field configuration that realizes that symmetry is ϕ “ 0, but we will have that
ϕcl ‰ 0 at the minimum of the effective potential.

Spontaneous symmetry breaking is a crucial ingredient of the Standard Model of particle
physics, where the Higgs sector has a spontaneously broken symmetry. The resulting non-
zero vacuum expectation value of the Higgs field that permeates the vacuum results in mass-
generation for the fermions as well as some of the gauge bosons of the Standard Model.

Here, we will see that quantum fluctuations can have the effect to spontaneously break a
symmetry that is realized classically.

To see all these results, we will now analyze the ϕ2
cl, ϕ4

cl and ϕ6
cl terms separately and then turn to

the analysis of the full expression for the finite part of the effective potential.
We first note that any terms that are of zeroth order in the field, whether they are divergent or
not, can simply be ignored. They contribute to a (possible infinite) shift of what we declare to be
”zero energy”, but (under the assumption of gravity not existing, that we operate under in this
course), this shift can be ignored, because we can only measure energy differences.
To isolate individual powers of ϕcl, we expand the logarithmic terms as follows, which we can do,
because we assume that Λ2 " m2, ϕ2

cl.

ln
ˆ

Λ2 `m2 ` λϕ2
cl

Λ2

˙

“ ln
ˆ

1 `
m2 ` λϕ2

cl
Λ2

˙

“

8
ÿ

n“1

p´1qn´1

n

ˆ

m2 ` λ2
cl

Λ2

˙n

, (272)

as well as
ln
ˆ

m2 ` λϕ2
cl

Λ2

˙

“ ln
ˆ

m2

Λ

˙

`

8
ÿ

n“1

p´1qn´1

n

ˆ

λϕ2
cl

m2

˙n

. (273)

Thus we obtain

Veff

ˇ

ˇ

ˇ

ϕ2
cl

“ ´
1

8 ¨ 32π2

ˆ

Λ22λ` 2Λ4 λ

Λ2 ´ 2 ¨ 2m2λ
m2

Λ2 ´ 2m4 λ

Λ2 ´ 2 ¨ 2m2λ ln m
2

Λ2 ´ 2m4 λ

m2

˙

`
m2

2 . (274)

The terms in the first line originate from quantum fluctuations, the term in the second line is the
classical contribution. We observe that all terms in the first line are „ λ, i.e., interactions are
necessary in order for quantum fluctuations to have an effect on the potential. Heuristically, we can
imagine quantum fluctuations as virtual particles. A cloud of ”virtual” particles is always there,
even in the ground state, and it interacts with any real particles, and can affect their properties
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(e.g., their mass). However, to have such an effect, virtual and real particles need to interact with
each other, and thus, there must be an interaction term in the theory for the effect to be present.
We see that there are some contributions to the ϕ2

cl-term which are finite, even in the limit Λ2 Ñ 8,
so the effect of quantum fluctuations that changes the potential, is there irrespective of whether or
not UV divergences are present.
However, there are also contributions that would diverge in the limit Λ2 Ñ 8. To deal with them,
we remember that we cannot measure the classical term and the effect of quantum fluctuations
separately, we can only measure their combination. Thus, m2 is so far an unspecified parameter.
If we thus require that

Veff

ˇ

ˇ

ˇ

ϕ2
cl

“
m2

phys

2 ϕ2
cl, (275)

with a finite m2
phys (that corresponds to the value an experiment would measure), we see that

we have to make the parameter m2 dependent on Λ in such a way that their combination gives
m2

phys. This, in essence, is the idea of renormalization, that we develop in more detail later in the
course and in QFT II. Note that here we’re not covering all steps of the renormalization; we’re
just sketching out the main ideas.
Next, we turn to the ϕ4

cl term. To isolate it from the ln-terms, it is useful to use of a slightly
different expansion, namely

ln
ˆ

m2 ` Λ2 ` λϕ2
cl

Λ2

˙

“ ln
ˆ

1 `
m2

Λ2

˙

`

8
ÿ

n“1

p´1qn´1

n

ˆ

λϕ2
cl

m2 ` Λ2

˙n

. (276)

Using this, we obtain

Veff

ˇ

ˇ

ˇ

ϕ4
cl

“ ´
1

8 ¨ 32π2

«

2Λ4 λ2

m2 ` Λ2 ´ 2λ2
ˆ

ln
ˆ

1 `
m2

Λ2

˙

´ ln m
2

Λ2

˙

`2m2 ¨ 2λ
ˆ

λ

m2 ` Λ2 ´
λ

m2

˙

´ 2m4

˜

´
λ2

2 pm2 ` Λ2q
2 `

λ2

2m4

¸ff

`
λ

12 . (277)

We again see that the terms from quantum fluctuations are proportional to the interaction, in
this case, they are „ λ2. There are terms that remain finite in the limit Λ2 Ñ 8, so we see that
quantum fluctuations also change the quartic term (i.e., the strength of the interaction), in the
effective potential.
Then, there are again divergent terms. We absorb them by defining the physical interaction
strength

Veff

ˇ

ˇ

ˇ

ϕ4
cl

“
λphys

12 . (278)

This is possible, because we can adjust λ to depend on Λ in such a way that the divergences in
λphys cancel. Again, we are not spelling out the details here and are not showing that we can really
do renormalization consistently by using just the two parameters m and λ. Instead, we are just
sketching out the main ideas and concepts.
In general, we will call theories in which we can absorb divergences within the existing mass/coupling
parameters renormalizable. This means that in such theories, the unknown physics at high mo-
menta (beyond the cutoff), affects these couplings (in our case, mass and quartic coupling). There-
fore, we cannot know the physical values m2

phys and λphys, because the UV physics that they depend
on is not known. They parameterize our ignorance about the UV properties of the theory.
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However, the rest of the coupling parameters (in our case, this will be λ6 of ϕ6 etc, as we will see
below), are calculable and independent of the UV physics.
Renormalizability thus means that we have a theory with finitely many free parameters – a pre-
dictive theory.
Usually, in QFT courses, renormalization is discussed later, and we will also come back to discuss
it in more detail. However, taking a look at it early on is useful not just to understand what the
effect of quantum fluctuations – the existence of which is the key difference between a classical
field theory and a quantum field theory – actually is, but also in order to check whether they result
in a theory that is not predictive at the quantum level, because it has a infinite number of free
parameters.10

Now let us consider the ϕ6
cl terms. If these are also divergent, then we are in trouble, because we

have used up the free parameters of our classical action, m2 and λ, to absorb the divergences.
We obtain

Veff

ˇ

ˇ

ˇ

ϕ6
cl

“
´1

8 ¨ 32π2

«

2Λ4 λ3

3 pm2 ` Λ2q
3 ´ 2m4

ˆ

λ3

3pm2 ` Λ2q3 ´
λ3

3pm2q3

˙

´2m2 ¨ 2λ
ˆ

´
λ2

2pm2 ` Λ2q2 `
λ2

2pm2q2

˙

´ 2λ2
ˆ

λ

m2 ` Λ2 ´
λ

m2

˙

ff

` 0. (279)

The last term is the classical contribution, which is zero. The quantum contribution is non-zero,
i.e., quantum fluctuations generate new interactions.
We observe that the limit Λ2 Ñ 8 is finite (this is if we keep m2 and λ fixed; a proper discussion of
course needs to consider the ϕ6 term in terms of renormalized couplings); there are no divergences
at this order in the field. We obtain

Veff

ˇ

ˇ

ˇ

ϕ6
cl

Ñ́
Λ2Ñ8

´
´1

12 ¨ 32π2
λ3

m2 . (280)

Therefore, quantum fluctuations generate a calculable ϕ6 interaction (and similarly, higher-order
interactions). These are independent of the presence of divergences in the quadratic and the quartic
term.
This result, that quantum fluctuations generate new interactions, with finite, calculable coeffi-
cients, is general and is not tied to whether or not there are divergences in the theory.

Finally, let us isolate the finite piece in the effective potential without Taylor-expanding in the field.
We assume that we have previously taken care of the divergences and they result in a quadratic
and quartic term with undetermined coefficients and we can write the finite part in terms of mphys

and λphys.
We have

Veff

ˇ

ˇ

ˇ

finite
“
m2

phys

2 ϕ2
cl `

λphys

12 ϕ4
cl `

1
2 ¨ 32π2

`

m2
phys ` λphysϕ

2
cl
˘2 ln

˜

m2
phys ` λphysϕ

2
cl

µ2

¸

. (281)

10There is much more to say and understand here, part of which we will cover in QFT II. It has to do with
understanding non-renormalizable theories as effective field theories, and with understanding that renormalizable
theories do not automatically make sense at all scales. Keywords that we will cover later (in QFT II), are asymptotic
safety, asymptotic freedom, effective field theories, the Renormalization Group and Landau poles. This will be
relevant for the quantum physics of QCD, QED and the Standard Model as a whole, as well as for numerous
condensed-matter models. It will even touch on ideas for a quantum theory of gravity.
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Figure 7: We show the finite part of the effective potential (for λphys “ 0.1 and m2{µ2
phys “ 0.72),

in blue. The blue dotted vertical line indicates where the minimum of the potential lies. The black
dashed line is the classical potential with the same values of mass and coupling.

For small enough ϕ2
cl, the ln is negative. Therefore the potential takes the form shown in Fig. 7.

Whereas the classical theory has ϕ “ 0 as a solution, quantum fluctuations introduce a non-zero
value of ϕcl at the minimum of the potential (for some values of parameters of the theory). In
those cases, the Z2-symmetry of the classical action is broken spontaneously in the ground state.
This means that the symmetry of the action is not realized by the ground state, because ϕcl “ 0,
which is the only field configuration that realizes this symmetry, is not a minimum.
Instead, we can evaluate where the two possible minima lie. We take the derivative of Veff

ˇ

ˇ

ˇ

finite
with respect to ϕcl and set it to zero. This equation determines extrema. ϕcl “ 0 is a solution,
but does not correspond to a minimum for all values of parameters. Instead, the remaining two
solutions are

ϕcl “ ˘

d

µ2e´µ2{2 ´m2
phys

λphys
‰ 0. (282)

The choice between the two minima that the vacuum has to ”spontaneously make”, is the act
of spontaneous symmetry breaking. It leads to a non-zero expectation value of the field that
permeates the vacuum.
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6 Gauge fields

In this chapter, we will learn how the existence of gauge fields (like the electromagnetic field)
necessarily follows from considering local symmetries, i.e., symmetries where the symmetry trans-
formation depends on the spacetime point. This is one of the profound connections between
different fundamental concepts that we encounter in QFT.
It is useful to know the formulation of electrodynamics in terms of a gauge field that is a 4-vector,
Aµpxq, the corresponding field strength tensor Fµν “ BµAν ´ BνAµ and the gauge transformation
Aµ Ñ Aµ

1
“ Aµ ´ BµΛ which leaves physics invariant. We will also use polarization vectors. If

you need to refresh your memory of these concepts, check out

• Chapter 4 of David Tong’s lectures on electrodynamics (online)

• Chapter 5 of Arthur Hebecker’s lectures on electrodynamics (online)

To start with, we go back to Noether’s theorem and evaluate the conserved current that is associ-
ated to the Up1q symmetry of a complex scalar field, as you did in one of the exercises.

We consider a function ϕpxq that takes values in the complex numbers. The Lagrangian has to be
real, because the action has to be real and thus

L “ Bµϕ
:Bµϕ´m2ϕ:ϕ (283)

“ |Bµϕ|
2

´m2|ϕ|
2
. (284)

The Lagrangian is invariant under a global Up1q symmetry group of phase rotations

ϕ Ñ eiαϕ, (285)

i.e., α is a number, not a function of spacetime coordinates. The infinitesimal version is

ϕ Ñ ϕ1 “ eiεϕ “ ϕ` iεϕ` Opε2q (286)

ϕ: Ñ ϕ:1
“ e´iεϕ: “ ϕ: ´ iεϕ: ` Opε2q. (287)

We can work either infinitesimally or with the non-infinitesimal phase rotation to show that the
Lagrangian is invariant:

L1 “ Bµ��e
iα ϕBµ���e´iα ϕ: ´m2ϕ:����

e´iαeiαϕ “ L. (288)

Here, we could cancel the factors e˘iα, because they are constants and can be pulled past the
partial derivatives.
The symmetry relates the two real scalar fields in ϕ, namely its real and imaginary part, to each
other. We can see this by writing

ϕpxq “ ϕ1pxq ` i ϕ2pxq, (289)

where ϕ1,2pxq are both real. Then we have a Lagrangian that is given by

L “ Bµϕ
:Bµϕ´m2ϕ:ϕ “ Bµϕ1Bµϕ1 ` Bµϕ2Bµϕ2 ´m2ϕ2

1 ´m2ϕ2
2. (290)
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The symmetry between the two real scalar fields holds, because their masses are both the same. If
we start from a Lagrangian for two independent scalar fields and we would like a U(1) symmetry,
we simply have to choose their masses equal. (Similarly, had we introduced interactions for ϕ (and
correspondingly ϕ1,2), the interaction terms would have to be built out of ϕϕ:, i.e., ϕ2

1 ` ϕ2
2, and

thus, e.g., the quartic couplings for ϕ1 and ϕ2 would have to be equal to obtain the symmetry, and
there would also have to be a ϕ2

1 ϕ
2
2-interaction.

The conserved current is

jµ “
BL

BpBµϕq
δεϕ`

BL
BpBµϕ:q

δεϕ
: (291)

“ pBµϕ:qiϕ` pBµϕqp´iϕ:q (292)

“ ´ipϕ:ÐÑ
Bµϕq. (293)

(we saw above that there is no boundary term that arises in L.) Here we have defined

A
ÐÑ
BµB “ ABµB ´ pBµAqB. (294)

The conserved charge is

Q “

ż

d3x j0 “ ´i

ż

d3x ϕ:ÐÑ
B0 ϕ (295)

“

ż

d3p

p2πq3

´

a:

p⃗ap⃗ ´ b:

p⃗bp⃗

¯

. (296)

The last equality follows by plugging in the expression for the field in terms of two sets of creation
operators from the exercises. We see that the states created by a{b are particles/antiparticles: they
have the same mass, but opposite charge.

6.1 Local symmetry and gauge fields

The symmetry transformation ϕpxq Ñ eiαϕpxq is called global, because α is the same for all
spacetime points. This does not create any problems with causality, because it is a symmetry
transformation, i.e., physical results are unchanged. Nevertheless, it seems more in the “spirit”
of special relativity to make the symmetry transformation local, i.e., dependent on the spacetime
point, ϕpxq Ñ eiαpxqϕpxq.
It is one of the profound results of theoretical physics that this requires the introduction of a gauge
field, which is a massless spin-1-field. In the case that the conserved global charge is interpreted
as electric charge, the corresponding field is the gauge field of electromagnetism and its quantized
excitations are the photons.

In this chapter, we will learn about the connection between local symmetries and gauge fields and
we will consider their quantization in the canonical and the path-integral framework.

Mini-Exercise 14. How does Bµϕ
:Bµϕ transform under ϕ Ñ eiαpxqϕ, ϕ: Ñ e´iαpxqϕ:? We

need this to figure out how L transforms.
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Solution.

Bµ

´

e´iαpxqϕ:pxq

¯

Bµ
´

ϕpxqeiαpxq
¯

“
`

´ipBµαqϕ: ` Bµϕ
:
˘

ppBµϕq ` iϕBµαq.

A mass term, m2ϕ:ϕ, or, more generally, a globally Up1q-symmetric potential V pϕq “ V p
ˇ

ˇϕ:ϕ
ˇ

ˇq,
which can only depend on ϕ:ϕ, is automatically invariant under the local symmetry as well. This is
because the potential itself is ultralocal, i.e., only depends on a single spacetime point. In contrast,
the kinetic term is not invariant, because it depends on spacetime points which lie an infinitesimal
distance apart.
Now we remember from the relativistic formulation of electrodynamics, that the gauge field Aµpxq

transforms according to
Aµpxq Ñ Aµpxq ´ BµΛpxq (297)

under a gauge transformation. Λpxq is a function that we can choose freely; under any choice of
Λpxq, the physics stays invariant. We can use this to define a covariant derivative

Dµ “ Bµ ` iAµ (298)

and choose Λpxq “ αpxq. Then we have that Dµϕ transforms just by a phase eiαpxq under the Up1q

symmetry:

Dµϕ Ñ Dµ
1ϕ1 “

`

Bµ ` iAµ
1
˘

eiαpxqϕpxq (299)

“ pBµ ` iAµ ´ iBµαpxqqeiαpxqϕpxq (300)

“ eiαpxqp����Bµiαpxq ` Bµ ` iAµ ´����iBµαpxqqϕpxq (301)

“ eiαpxqDµϕ. (302)

Thus we are automatically led to the introduction of gauge fields, if we promote global symmetries
to be local. Thus, each local symmetry results in an interaction that is mediated by the gauge
field.
We will later (in QFT II), generalize this to non-Abelian symmetry groups, e.g., SUp2q and SUp3q,
for which the gauge bosons interact with each other and which are part of the Standard Model.

Let us dive a little further into the mathematics of gauge fields before we quantize. Why do we
actually need the gauge connection (which is just a more mathematical term for the gauge field)?
The answer is that it is necessary to evaluate the change of the field from one spacetime point to
another, i.e., to define a derivative. The definition that is fine for a field without a local symmetry
transformation,

nµBµϕpxq “ lim
εÑ0

1
ε

pϕpx` εnq ´ ϕpxqq with unit vector nµ (303)

does not work, i.e., the partial derivative fails, because, for a local symmetry, the phases of ϕpxq

and ϕpx` εnq are different.
Instead, we have to parallel transport ϕpxq from one point to a neighboring point in such a way
that the phase difference between the field at both points is removed. Upy, xqϕpxq fulfills the
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requirement of transforming just like ϕpyq, if

U 1py, xq “ eiαpyqUpy, xqe´iαpxq. (304)

Therefore, we can define a covariant derivative Dµ, such that

nµDµϕpxq “ lim
εÑ0

1
ε

pϕpx` εnq ´ Upx` εn, xqϕpxqq. (305)

How does this relate to our previous definition? We assume that Upx, xq “ 1, and Upx, yq to be
smooth, so that we can Taylor expand

Upx` εn, xq “ 1 ´ i ε nµAµpxq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
this is the linear

Taylor coefficient and
this definition of
Aµ and Dµagrees

with the earlier one.

` . . . (306)

From Upx, yq, we can define an object that is conceptually interesting and also very useful in QFT,
because it forms the basis of so-called lattice simulations, i.e., numerical simulations of QFT, where
spacetime is discretized into a lattice. This object is a Wilson line

Upy, x, Cq “ ei
ş

Cpx,yq
dxµ Aµ , (307)

where Cpx, yq is a curve from x to y.
From U , the name gauge connection for Aµ makes more sense: Upx`εn, xq is the phase associated
to the straight line from x to x` εn, so Aµ connects different points in a gauge-invariant way.

6.2 Dynamics for Aµ

We have introduced a new field, Aµ, so we need to specify its dynamics. Because Aµ Ñ Aµ ´ Bµα

under a gauge transformation, pBµA
µqpBνA

νq is not gauge invariant, but FµνFµν is, because Fµν
is gauge invariant. Here, we are relying on using knowledge from classical electrodynamics.

6.3 Quantization of the gauge field

We focus on the free (non-interacting) theory first, so our Lagrangian is

L “ ´
1
4FµνF

µν .

We try to treat each of the 4 components of Aµ as an independent field, finding the associated
canonically conjugate momentum field.

Mini-Exercise 15. Find Πµ “ BL
B 9Aµ

.
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Solution.

Πµ “
BL

B 9Aµ
“

B

BpB0Aµq

ˆ

´
1
4FρνFστη

ρσηντ
˙

“ ´
1
2Fρνη

ρσηντ
B

BpB0Aµq
pB0Aτ ´ BτA0q

“ ´
1
2Fρν

`

ηρ0ηνµ ´ ηρµην0˘ “ Fµ0.

This is a problem, because F 00 “ 0 and thus Π0 “ 0. Therefore, the quantization deals not with
4 independent fields, but rather with a constraint. That such a constraint is there, makes sense,
because the gauge symmetry means that not all four components of Aµ are physical and indepen-
dent; the gauge symmetry makes some of the components unphysical.

There are several ways to deal with this:

i) Choose radiation gauge p∇⃗ ¨ A⃗ “ 0, A0 “ 0q, then quantize.

ii) Gupta-Bleuler quantization: impose the gauge condition on the Hilbert space.

iii) Hamiltonian quantization with constraints à la Dirac.

iv) Faddeev-Popov trick in the path-integral.

We will follow method i) in an exercise. In this procedure, only the 2 physical polarizations of
the photon are quantized, which is an advantage. As a disadvantage, we give up manifest Lorentz
invariance, because the radiation gauge condition ∇⃗ ¨ A⃗ “ 0 and A0 “ 0 is not manifestly Lorentz
invariant.

Method ii) has the advantage that we can work in a gauge condition that is manifestly invariant,
BµA

µ “ 0. We will also see directly the connection between gauge-symmetry and unitarity (i.e.,
positivity of probabilities), because we will encounter negative-norm states which are unphysical
and removed by the gauge condition.

Method iii) is generalizable to other systems with constraints and is therefore generalized in Loop
Quantum Gravity. We will not cover it here, but you can read up on it in the book by Fradkin.

Method iv) generalized to non-Abelian symmetry groups, e.g., SUp2q and SUp3q and is therefore
used in quantization of the Standard Model.

6.4 Gupta-Bleuler quantization

In order to choose a gauge condition that is compatible with Lorentz-invariance, we cannot single
out any given component of Aµ. Thus, we choose Lorenz gauge11

BµA
µ “ 0. (308)

11This gauge is named after the physicist Lorenz, who is a different person from the Lorentz after whom Lorentz
transformations are named. Lorentz was Dutch, Lorenz was Danish.
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The gauge-fixed Lagrangian is

L “ ´
1
4FµνF

µν ´
λ

2 pBµA
µq

2
. (309)

λ is called the gauge parameter, and we will choose λ “ 1 (Feynman gauge), which is a special
case of the family of gauges that constitute Lorenz gauge. The gauge-fixing condition is added
quadratically, so that it shows up as part of the kinetic term for Aµ and thus affects the propaga-
tion of the four components of Aµ. In particular, in this way, there will be a contribution „ BµA

µ

in the canonically conjugate momentum field Πµ.

Then,

Πµ “ Fµ0 ´ ηµ0BχA
χ, (310)

and L “ ´
1
2BµA

νBµAν ` total derivative. (311)

This looks like the Lagrangian for four massless, real scalar fields (the 4 components of Aµ).
However, the sign of the kinetic term of A0 is wrong. In the exercises, you will see that this problem
persists for a massive vector field, so that the Proca action actually contains the constraint that
A0 does not propagate.
We also note that if we impose Lorenz gauge BµA

µ “ 0 at this point, then we get back the result
Π0 “ 0. The solution is that we first quantize and then impose the gauge-condition BµA

µ “ 0 on
the Hilbert space, i.e., we will define a physical subspace Fphysical, such that

xψ|BµA
µ|ψy “ 0 for |ψy P Fphysical. (312)

Let’s see how this construction works. We quantize by demanding

rAµ, Aνs “ 0 “ rΠµ,Πνs, (313)

rAµpx⃗q,Πνpy⃗qs “ i η ν
µ δ3px⃗´ y⃗q “ i δ ν

µ δ3px⃗´ y⃗q. (314)

Now we Fourier transform, introduce a and a: and go over to Heisenberg fields:

Aµpxq “

ż

d3k

p2πq3
1

a

2ωk⃗

´

ak⃗,µe
´ikx ` a:

k⃗,µ
eikx

¯

. (315)

Accordingly, we arrive at
”

ak⃗,µ , a
:

k⃗1,ν

ı

“ ´ηµν2 ωk⃗
q
k0

p2πq3δ3pk⃗ ´ k⃗1q. (316)

Comparing to the case of the scalar field,
”

ap⃗, a
:

q⃗

ı

„ δ3pp⃗ ´ q⃗q, we note that the sign of
”

a0, a
:
0

ı

is wrong. That there is a problem with the 0-component of Aµ is not too surprising, because
this is the component for which the canonically conjugate momentum field vanishes, if the gauge
condition is imposed. Now, we can see more precisely what the problem is, when we try to define
the Hilbert space (Fock space):

75



1) The metric on the Hilbert space is not positive definite, i.e., some states have negative norm.

›

›

›
a:

0 |0y

›

›

›

2
“ x0|a0 a

:
0|0y “ x0|

´

a:
0 a0 ´ 1

¯

|0y “ ´1. (317)

Because of the wrong sign of the commutator, this is ´1, not `1. We might try to solve this
problem by switching the roles of aµ and a:

µ, but then the problem simply reappears for ai,
so that is not a solution.

2) Our choice of gauge, BµA
µ “ 0, cannot be imposed at the operator level, because

rA0, BµA
µs “ 0 would have to hold for that. However, BµA

µ “ Π0, and rA0,Π0s ­“ 0, thus
imposing the gauge condition on the operator level is incompatible with the commutation
relations.

Gupta and Bleuler’s solution to both problems is to define a physical subspace Fsubspace of the
Fock space F by

xψ|BµA
µ|ψy “ 0 @ |ψy P Fphysical, (318)

i.e., physical states are annihilated by the annihilation part of BµA
µ:

BµA
µ

ˇ

ˇ

ˇ

ˇ

annihilation
|ψy “ 0, (319)

because the part of Aµ containing creation operators would not vanish on the vacuum state and
thus the vacuum state would be declared to not be part of the physical Hilbert space; thus that
condition would be too severe. Fphysical contains no negative norm states, as we will see, but it
still contains zero-norm states.
We define F0 – t|ψy P Fphysical : }|ψy} “ 0u, so that we can define the physical Hilbert space as
the quotient H “ Fphysical{F0.
This means that H is the space of equivalence classes of vectors from H, with the equivalence
relation „ defined as

|ψy „
ˇ

ˇψ1
D

ðñ
›

›|ψy ´
ˇ

ˇψ1
D
›

› “ 0, (320)

i.e., |ψy and |ψ1y differ by the addition of a state of zero norm. To work out the physical implications,
we will work in terms of the polarization vectors.

6.4.1 Polarization vectors

A general 1-photon state is a linear combination of states a:

k⃗,µ
|0y, that can be written as

´ϵµpkq a:

k⃗,µ
|0y , (321)

with fixed k⃗; where the negative sign is there to avoid a minus from the metric when lowering the
index and considering spacelike polarization. There are 4 independent polarizations ϵµpkq for any
k⃗ and different ways to choose a basis.
The basis we will use is based on a light-like auxiliary vector n, n2 “ 0, with n ∦ k (n not parallel
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to k), such that we can go to a coordinate system in which

n “
1

?
2

¨

˚

˚

˚

˚

˝

1
0
0

´1

˛

‹

‹

‹

‹

‚

, k “

ˇ

ˇ

ˇ⃗
k
ˇ

ˇ

ˇ

¨

˚

˚

˚

˚

˝

1
0
0
1

˛

‹

‹

‹

‹

‚

. (322)

Then we can choose the 4 polarization basis vectors as

ϵu “ n, (323)

ϵL „ k, (324)

ϵp1q, ϵp2q orthogonal to n, k. (325)

The meaning of “u” and “L” will become clear below. These conditions are fulfilled by

ϵu “
1

?
2

¨

˚

˚

˚

˚

˝

1
0
0

´1

˛

‹

‹

‹

‹

‚

, ϵL “
1

?
2

¨

˚

˚

˚

˚

˝

1
0
0
1

˛

‹

‹

‹

‹

‚

, ϵp1q “

¨

˚

˚

˚

˚

˝

0
1
0
0

˛

‹

‹

‹

‹

‚

, ϵp2q “

¨

˚

˚

˚

˚

˝

0
0
1
0

˛

‹

‹

‹

‹

‚

. (326)

A general 1-photon state is
|ϵ, ky “ ´ϵµpkqa:

k⃗,µ
|0y , (327)

and the scalar product of two 1-particle states is

@

ϵ1, k1
ˇ

ˇϵ, k
D

“ ϵ1µpk1q˚ϵνpkq x0|ak⃗1,µ a
:

k⃗,ν
|0y (328)

“ ´
`

ϵ1 ¨ ϵ
˘

2k0p2πq3δ3pk⃗ ´ k⃗1q. (329)

Based on this, we can now construct the Hilbert space in terms of polarizations. Due to our
discussion of the little group, we already know that only two polarization vectors will play a role
in physical states of the photon. The condition

BµA
µ

ˇ

ˇ

ˇ

ˇ

annihilation
|ψy “ 0 (330)

in terms of polarization vectors is the subject of the next mini exercise:

Mini-Exercise 16. What does BµA
µ
ˇ

ˇ

annihilation |ψy “ 0 translate into in terms of the polar-
ization vectors?
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Solution.

BµA
µ

ˇ

ˇ

ˇ

ˇ

annihilation
|ϵ, qy “ 0

kµa
µ

k⃗
|ϵ, qy “ 0

kµ aµ
k⃗
aν:

q⃗

´¹¹¹¹¹¸¹¹¹¹¹¶
„ηµνδ3pk⃗´q⃗q

ϵνpqq |0y “ 0

kµϵ
µpkq “ 0.

This condition holds automatically for ϵp1q, ϵp2q, ϵL, but is violated for ϵu, i.e., ϵu is the unphys-
ical polarization. Therefore, it makes sense to perform a linear transformation on the space of
creation/annihilation operators:

α:

k⃗,pu,L,1,2q
“ ϵµ pu,L,1,2qpkqa:

k⃗,µ
. (331)

6.4.2 The Fock space

F can be built with the a: or the α:, but we can now define Fphysical as the space built by α:

k⃗,pL,1,2q
,

because for all those states

pk ¨ ak⃗qpproducts of ϵpL,1,2q

q⃗ ¨ a:

q⃗q |0y “ 0. (332)

Thus,
|ψy P Fphysical Ñ |ψy “ pproducts of α:

pL,1,2q
q |0y . (333)

Next, we can isolate the states with zero norm:
Since ϵ2L “ 0, }|ψy} “ 0 if and only if at least one α:

L appears in |ψy. Such zero-norm states do not
change the expectation values of observables:

@

ψ1
ˇ

ˇO
ˇ

ˇψ1
D

“ xψ|O|ψy , if
ˇ

ˇψ1
D

“ |ψy ` p. . . α:

L . . .q |0y . (334)

We demonstrate this claim for the Hamiltonian:

H “

ż

d3x
´

Πµ 9Aµ ´ L
¯

(335)

“

ż

d3k

p2πq3 k0

´

´a:

k⃗,µ
aµ
k⃗

¯

(336)

“

ż

d3k

p2πq3 k0

˜

2
ÿ

i“1
α:

k⃗,i
αk⃗,i ´

”

α:

k⃗,u
αk⃗,L ` α:

k⃗,L
αk⃗,u

ı

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
vanishes inside

a “physical” state

¸

. (337)

Ultimately, the two transverse polarizations ϵp1,2q are related to physical states; just as they already
are in the classical theory.

Note: From experiment, we know that there are 2 physical degrees of freedom of the photon, i.e.,
just two independent polarizations exist. Thus, it makes sense that one polarization is unphysical,
but we would actually expect two. The reason that another polarization is not removed by the
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gauge condition, but instead has zero norm and therefore does not show up in expectation values
of physical states, is the residual gauge freedom.
In the classical theory, BµA

µ “ 0 does not fix the gauge freedom completely, Aµ Ñ Aµ ` Bµχ still
has some choices of χ. This is easiest to see in Fourier space, where Ãµ Ñ Ãµ ` ikµχ̃ is the gauge
freedom.
If kµ is lightlike, adding a term „ kµ does not destroy the gauge condition, because k2 “ 0; the new
field still obeys kµÃµ “ 0. The quantum analogue of this is to add states involving longitudinal
polarizations.

General comment on gauge symmetries: they are not so much physical symmetries, but
redundancies of description, because the physical state is the Hilbert space, in which there are no
gauge transformations, because we’ve first gone to Fphysical and then moded out F0.

6.5 Path-integral quantization of gauge theories

(Fradkin, Srednicki . . . )

6.5.1 Gauge symmetry = gauge redundancy

There is an important conceptual difference between a global and a local symmetry: A global
symmetry in a QFT is a genuine symmetry between physically viable configurations; it implies that
there are quantities (most importantly the action) that are equal for the different configurations
related to each other by the symmetry. For instance, for an O(2) symmetry that rotates two scalar
fields ϕ1pxq, ϕ2pxq into each other, the action is the same, irrespective of whether field configuration
is, e.g., tϕ1pxq “ sinpxq, ϕ2pxq “ 0u or tϕ1pxq “ 0, ϕ2pxq “ sinpxqu. Nevertheless, the two different
configurations are physically distinct (and can be distinguished by measurements) and the system
has two physical degrees of freedom (one linked to ϕ1 and one to ϕ2).
For a local symmetry, this is different, because the gauge transformation relates different configura-
tions of Aµpxq to each other in a way that is not accessible to any measurement; the configurations
Aµpxq and A1

µpxq “ Aµpxq ´ Bµαpxq are physically indistinguishable. Thus, gauge symmetry is not
really a symmetry, but rather a redundancy of description. We see this from the fact that not all
four components of Aµ give rise to physical degrees of freedom; despite the fact that Aµpxq has
four components; the photon only has two degrees of freedom.
Gauge theories can be written in terms of gauge-invariant (i.e., physical) quantities, but at the
cost of giving up locality. These are the Wilson-loops (briefly introduced above). They form the
basis of lattice simulations of gauge theories, but outside of numerical simulations, formulating a
QFT in terms of these non-local objects is difficult and rarely done in practise. Typically, given the
choice between the gauge redundancy and non-locality, one works in the gauge-redundant, local
description in terms of the gauge field.

6.5.2 The path integral for photons: kinetic term as projector

(Literature for this subsection: Srednicki).
The path integral for photons is

ZrJs “

ż

DAeiSrAs`i
ş

d4xJµAµ . (338)
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The currents that photons couple to are the conserved currents for scalar (and later also spin 1/2)
fields that follow from Noether’s theorem for a local U(1) symmetry, i.e.,

BµJ
µ “ 0. (339)

We write out the action and the current-terms in the exponential in Eq. (338) in Fourier space:

S “ ´
1
4

ż

d4xFµνF
µν `

ż

d4xJµA
µ (340)

“
1
2

ż

d4k

p2πq4

`

´Ãµpkq
`

k2ηµν ´ kµkν
˘

Ãνp´kq ` J̃µpkqÃµp´kq ` J̃µp´kqÃµpkq
˘

. (341)

Now we are interested in performing the path-integral over the gauge field. Because the gauge
field couples to the complex scalar through the current, we can already see that, just like when we
integrated over quantum fluctuations of the scalar field, the integral over quantum fluctuations of
the gauge field will generate new interactions for the scalar field. However, there is an apparent
problem in performing the path integral over the gauge field, and we will see (and then solve) it
now.
The path integral is quadratic in Aµ. Thus it is a Gaussian integral and we can perform it.
Because the exponential contains a quadratic and a linear term, we need to shift Ãµ to “complete
the square” according to the path-integral analogue of

ż 8

´8

dx ei x
2a`ib x “

ż 8

´8

dy eipy´ b
2a q

2
a`ibpy´ b

2a q where y “ x`
b

2a

“

ż 8

´8

dy eia y
2

´i b2
4a . (342)

In our case, this means that we need to shift

Ãµpkq Ñ Aµ ´
1
2J

ν
`

k2ηµν ´ kµkν
˘´1

, (343)

i.e., we need to invert the matrix

k2Pµνpkq :“ k2ηµν ´ kµkν . (344)

This matrix provides the kinetic term for the gauge field. It turns out, that it is not invertible,
because is has a vanishing eigenvalues. To see this, do the following

Mini-Exercise 17. What is Pµνkν?

Solution.

Pµνkν “

ˆ

ηµν ´
kµkν

k2

˙

kν “ kµ ´
kµ k2

k2 “ 0.

Thus, kν is an eigenvector of Pµν , with eigenvalue zero. This is related to the fact that the polar-
ization vector ϵL „ k does not describe a physical polarization. In fact, Pµν is a projection matrix.
A projection matrix is defined by the property P 2 “ P .
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Mini-Exercise 18. Check that PµνpkqP λ
ν pkq “ Pµλpkq.

Solution.

PµνpkqP λ
ν pkq “

ˆ

ηµν ´
kµkν

k2

˙

¨

ˆ

ηλν ´
kνk

λ

k2

˙

“ ηµλ ´
kµkλ

k2 ´
kµkλ

k2 `
kµ k2 kλ

pk2q2 “ ηµλ ´
kµkλ

k2 “ Pµλpkq.

For any projection matrices, the eigenvalues are either zero or one; in the present case, one of
the eigenvalues is zero. Thus, it seems that we are prevented from carrying out the path integral
for the gauge field by the projector-properties of the kinetic term of the gauge field. This is a
consequence of the gauge symmetry, due to which not all components of Aµ are physical and not
all propagate as physical photons.
However, it turns out that the path integral becomes doable because the longitudinal polarization
drops out entirely. To see this, we imagine writing Ãµpkq as a sum of contributions proportional
to each of the polarization vectors. Then the component „ ϵL drops out of the kinetic term (it is
“projected out”). In addition, it also drops out of the product JµAµ, because

ϵLµ ¨ J̃µpkq „ kµJ̃
µpkq “ 0. (345)

Here, we first used that ϵL „ k and then we used that the current is conserved,

BµJ
µ ñ kµJ̃

µpkq. (346)

Thus, the integration over ϵL is trivial, because ϵL does not show up in the exponential. Therefore,
it just gives us a constant prefactor of the path integral, which we can equally well just drop from
the outset, because it just changes the overall normalization. This is enough to make the path
integral for photons calculable.
Nevertheless, it is very instructive to think about the path integral for gauge theories in a more
abstract way. First of all, it helps us to understand the properties of gauge symmetries more
deeply; second, what we will do now generalizes to non-Abelian symmetry groups (whereas the
simple dropping-out-of-the-path-integral does not generalize to non-Abelian symmetries).

6.5.3 Conceptual aspects: gauge orbits and gauge fixing

ZrJs “

ż

DAµ ei
ş

d4x L with L “ ´
1
4FµνF

µν ` JµA
µ (347)

is the straightforward generalization of the path-integral expression for the scalar field. However,
the expression is not well-defined, because field configurations (sometimes also referred to as “his-
tories”, because the value of the field at each point in space is give for all times) that differ only
by a gauge transformation, and are thus physically equivalent, are included. Because DAµ and S

are gauge invariant, the weight of such configurations is equal. Therefore, ZrJs has a divergence
of the form

V pGq
V
, (348)

where V pGq is the volume of the gauge group (2π for Up1q) and V the spacetime volume. We will
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now implement a procedure that will straightforwardly generalize to non-Abelian gauge symme-
tries and thus to the Standard Model. We will then see, that for the case of Up1q, i.e., photons, the
path integral simplifies, but we will still use Up1q as our example for the more general path-integral
quantization of gauge theories.

To do so, it is useful to introduce a few more concepts:
In general, the vector potential Aµ transforms in the adjoint representation of the gauge group,
which means that it can be written as a linear combination of the group generators, i.e., it takes
values in the algebra of the group. A field in the adjoint representation of a Lie group transforms
as

Aµ Ñ A1
µ “ AUµ “ UAµU

: ` iUBµU
:, (349)

which holds for Up1q, but also SUp2q and SUp3q etc. For Up1q, we have that U “ eiαpxq, such
that

Mini-Exercise 19. What does AUµ look like?

Solution.

AUµ “ eiαpxqAµe
´iαpxq ` ieiαpxqpBµp´iqαpxqqe´iαpxq

“ Aµ ` Bµαpxq.

This is the more familiar form of the gauge transformation that we already know. We will work
with the more abstract, general form in Eq. (349), because then our results apply to other gauge
groups directly.

To properly understand the effect of a gauge symmetry (which is really a redundancy of descrip-
tion), we will consider the structure of the configuration space for the gauge field. The configuration
space is an (infinite-dimensional) space; each point in it denotes a field configuration Aµpxq. In
other words, the configuration space contains all possible configurations of the fields, i.e., all pos-
sible sets of four functions of the spacetime coordinates that make up the four-vector function
Aµpxq. Note that the configuration space is not just those configurations Aµpxq which satisfy the
equations of motion. The configuration space is the space that we are integrating over in the path
integral.
It is useful to think of the configuration space of Aµ as follows:
The configuration space consists of classes of gauge configurations. Within each class, all field
configurations are physically equivalent and thus related to each other by a gauge transformation,
cf. left panel in Fig. 8. We would like to pick one representative from each class to get rid of the
factor V pGqV in front of the path integral. This is achieved by a gauge condition, cf. right panel
in Fig. 8.

Mini-Exercise. This is all rather abstract. Team up in groups of 2-3 to discuss these ideas.
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classes of physically equivalent
gauge configurations

1

-

->

L...

gauge
condition b

gauge
transformations

gauge
condition a

one class = one gauge orbit

-

-

Figure 8: Left panel: One can move “along” a class by infinitesimally changing αpxq in a suitable
way (this is also sometimes called a “gauge orbit”. The drawn space of Aµpxq is infinite-dimensional;
each point corresponds to a distinct field configuration; the axis are labeled by some suitable choice
of basis functions.
Right panel: ˝: representative field configuration from each class, picked by gauge condition a.
˝: representative field configuration from each class, picked by gauge condition b.
˝ and ˝ along one orbit are physically equivalent, but mathematically distinct field configurations.

6.5.4 Fadeev-Popov-trick

How to achieve this selection?
Naively, we would think that we should write

ZrJs „

ż

DAµ δpgauge condition)eiS . (350)

However, in this way we would explicitly break the gauge symmetry through our choice of gauge
condition. This must not be the case, because then we get problems with unitarity, because the
modes that come with negative norm in F are only removed because of gauge symmetry. Instead,
we will use the functional version of

1 “

ż

dx δpfpxqq
ÿ

i

ˆ

df
dx

˙
ˇ

ˇ

ˇ

ˇ

x“xi

, (351)

where xi are the zeros of fpxq. Note that the right-hand-side of the expression contains the desired
delta function. However, the left-hand side is 1, due to the Jacobian factor on the right-hand side.
Thus, if we use an expression like this, we are inserting a 1, but are at the same time achieving
our goal to have a delta-function of the gauge condition.
Under the generalization from an integral over x to an integral over all possible gauge transforma-
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tions, it similarly holds that

1 “

ż

DU
²

integral over
all gauge

transformations

δpgpAUµ q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
gauge condition

gpAU
µ q“0

det
ˇ

ˇ

ˇ

ˇ

δg

δU

ˇ

ˇ

ˇ

ˇ

g“0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Jacobian

. (352)

We assume that g only has one zero.12 Thus, we can write:

ZrJs “

ż

DAµ eiSrAs`i
ş

d4x JµA
µ

ż

DU δ
`

gpAUµ q
˘

det
ˇ

ˇ

ˇ

ˇ

δg

δU

ˇ

ˇ

ˇ

ˇ

g“0
. (353)

Let us take a closer look at det
ˇ

ˇ

ˇ

δg
δU

ˇ

ˇ

ˇ

g“0
, for the case g “ BµA

µ, i.e., Lorenz gauge. δAµ “ Bµαpxq,
and thus

δg

δU
“

δg

δAUµ

δAUµ
δα

δα

δU
“ pBµBµqeiα. (354)

The net result is
det

ˇ

ˇ

ˇ

ˇ

δg

δU

ˇ

ˇ

ˇ

ˇ

g“0
“ det B2. (355)

This is independent of Aµ, and can just be factored out of the path integral. This will be different
for non-Abelian gauge symmetries, where we will have to introduce the so-called Faddeev-Popov
ghosts at this step (see QFT II).
Now we use that

i) det
ˇ

ˇ

ˇ

δg
δU

ˇ

ˇ

ˇ

g“0
is gauge invariant, i.e., it is the same for each gauge transformation (see above).

ii) SrAµs is gauge invariant, so SrAµs “ SrAUµ s; and the coupling to the current is gauge
invariant (because it arises precisely to make the charged field in the current have a gauge-
invariant kinetic term).

iii) DAµ is gauge invariant, because we are integrating over all configurations, so DAµ “ DAUµ .

“ñ ZrJs “

ż

DU
ż

DAUµ eiSrAU
µ s`i

ş

d4x JµA
U µ

δ
`

gpAUµ q
˘

det
ˇ

ˇ

ˇ

ˇ

δg

δU

ˇ

ˇ

ˇ

ˇ

g“0
. (356)

Now AUµ appears everywhere in the integrand and we can simply relabel the integration variable,
AUµ Ñ Aµ, so that

ZrJs “

ż

DU
ż

DAµ eiSrAs`i
ş

J¨A δpgpAqq det
ˇ

ˇ

ˇ

ˇ

δg

δU

ˇ

ˇ

ˇ

ˇ

g“0
. (357)

ş

DU is now a prefactor that factorizes. It is precisely the integral over the volume of the gauge
group that we wanted to get rid of. We perform one more step to make this expression usable in
practice:
We use that

δpgpAqq “ lim
ξÑ0

e
i

2ξ

ş

d4x pgpAqq
2

(358)

and then generalize to finite ξ. The limit ξ Ñ 0 imposes the gauge condition sharply. In this way,
the gauge-fixing condition just appears alongside the action.

12In non-Abelian gauge theories, this assumption does not hold beyond perturbation theory and leads to the
Gribov problem, that still remains unsolved and subject of research.
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At the end, we obtain

ZrJs “

ż

DAµ eiSrAs`i
ş

d4x AµJ
µ

` i
2ξ

ş

d4xpBµA
µ

q
2
. (359)
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7 Spin 1/2 field

7.1 Gamma-matrices (Dirac matrices) and spinors

We saw in our study of the representation of the Lorentz group, that there are two representations
with spin 1{2, each of which has two degrees of freedom. We already called them “left-handed
spinor” and “right-handed spinor”.
We will group them together into a reducible representation, which is a Dirac spinor. As we will
discover, it will have 4 components, namely right-handed and left-handed particle and antiparticle.
It turns out that a representation of the Lorentz algebra,

rMµν ,Mρσs “ ipηνρMµσ ´ ηµρMνσ ´ ηνσMµρ ` ηµσMνρq (360)

can be found, by defining
Mµν “

i

4 rγµ, γνs, (361)

where γµ is called a “gamma matrix” or “Dirac matrix” and the defining property of γ-matrices is
that they satisfy the

Clifford algebra: tγµ, γνu “ γµγν ` γνγµ “ 2ηµν1. (362)

Here, the γ’s must clearly be matrices, so that their commutator, used to define M , does not
simply vanish. The 1 in the Clifford algebra is a 1 in the indices of these matrices that we often
suppress. One can show that the smallest rank for which the Clifford algebra can be satisfied is 4.
For instance, we can define

γ0 “

˜

0 1

1 0

¸

, (363)

(where the 0’s denote the 2x2 submatrices, filled with zeros, and the 1’s are unity in 2x2 matrices)
and

γi “

˜

0 σi

´σi 0

¸

, i “ 1, 2, 3 (364)

with the Pauli matrices

σ1 “

˜

0 1
1 0

¸

, σ2 “

˜

0 ´i

i 0

¸

, σ3 “

˜

1 0
0 ´1

¸

. (365)

Then,
tγµ, γνu “ 2ηµν1. (366)

It is not really surprising that we see the Pauli matrices appear (and appear twice in each γ). After
all, we saw that there are 2 spin-1{2-representations of the Lorentz group, which each correspond
to a fundamental representation of an SUp2q (which is given by Pauli matrices). We’re currently
building a reducible representation that contains both of these irreducible representations together
and thus has 2 sets of Pauli matrices. If we want to write this in a more compact way, we can
define a 4-vector, where each of the components is a matrix,

σµ “

˜

1

σi

¸

and another 4-vector σ̄µ “

˜

1

´σi

¸

. (367)

86



This allows us to write

γµ “

˜

0 σµ

σ̄µ 0

¸

. (368)

(Note: if you work in p´,`,`,`q conventions, then γµ has an extra prefactor p´iq).

Mini-Exercise 20. Given σiσj “ δij ` iϵijkσk, check that

tγµ, γνu “ 2ηµν1, for pµ, νq “ p0, 0q and pµ, νq “ pi, jq. (369)

Solution.

tγµ, γνu “ γµγν ` γνγµ

“

«˜

0 σµ

σ̄µ 0

¸˜

0 σν

σ̄ν 0

¸

`

˜

0 σν

σ̄ν 0

¸˜

0 σµ

σ̄µ 0

¸ff

“

«˜

σµσ̄ν` 0
0 σ̄µσν

¸

`

˜

σν σ̄µ 0
0 σ̄νσµ

¸ff

.

For pµ, νq “ p0, 0q, we obtain

tγµ, γνu “

«˜

1 0
0 1

¸

`

˜

1 0
0 1

¸ff

“ `2 ¨ 1 “ `2η00
1.

For pµ, νq “ pi, jq, we obtain

␣

γi, γj
(

“

˜

´σiσj 0
0 ´σiσj

¸

`

˜

´σjσi 0
0 ´σjσi

¸

“ ´

˜

pδij ` iϵijkσkq 0
0 pδij ` iϵijkσkq

¸

´

˜

pδji ` iϵjikσkq 0
0 pδji ` iϵjikσkq

¸

“ ´2
˜

1 0
0 1

¸

δij “ 2 ηij 1,

where we used that ϵjik “ ´ϵijk.

We can also define a non-zero matrix

γ5 “ iγ0γ1γ2γ3 “
i

4!ϵµνρσγ
µγνγργσ. (370)

From the expression on the rhs in terms of ϵµνρσ, it follows that

␣

γ5, γµ
(

“ 0. (371)

It also holds that
`

γ5˘2
“ 1, and, most importantly,

γ5 “

˜

´1 0
0 1

¸

. (372)
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We already see that γ5 may later be helpful to isolate the two irreducible spin-1{2 representations
in our reducible one, because we can define a set of projection matrices

PL “
1
2
`

1 ´ γ5˘ “

˜

1 0
0 0

¸

(373)

and PR “
1
2
`

1 ` γ5˘ “

˜

0 0
0 1

¸

. (374)

The explicit expressions for the γ’s (and γ5) are in the Weyl representation. (It turns out, as we
will see later, that we can perform linear transformations on the γ-matrices, γµ Ñ SγµS´1 and
thereby write different representations.)

Now we must define the field that constitutes the spin-1{2-representation. We will call it a spinor.
From our considerations, we know that

• it must have 4 components, so that the Dirac matrices and thus the generators Mµν in the
spin-1{2-representation can act on it. (Note that it is an accident that the spinor has as
many components as there are spacetime dimensions. A Dirac spinor has four components
in any spacetime dimensionality.).
We can also argue for the four components on physical grounds: an electron is a massive
spin 1/2 particle, and hence comes in a left-handed and a right-handed version, which makes
up two degrees of freedom.13 However, we already know from our experience with the
complex scalar field, that a QFT needs particles and antiparticles in order for causality to
hold (remember that the commutator of ϕpxq and ϕpyq at spacelike distances vanishes, but
its two parts, the propagator from x to y and the commutator from y to x, do not vanish
individually, but cancel in the commutator. This has the interpretation of the effect of a
particle traveling from x to y cancelling against the effect of an antiparticle travelling from
y to x.). Therefore, we also need the positron, which also has a right-handed component.
Thus, we need a total of four degrees of freedom.

• it cannot be a 4-vector, because it does not transform in the 4-vector representation. The
index that it carries must be a new kind of index, namely one associated to the spinor
representation. We will use Latin indices from the beginning of the alphabet pa, b, ..q.
(Some books also use Greek indices from the beginning of the alphabet pα, β...q as well as
Greek letters where one puts a dot on top. In this convention, α, β will be the indices
of the left-handed spin-1{2-representation, and 9α, 9β will be the indices of the right-handed
spin-1{2-representation. Instead, we just work with indices pa, b, . . . q “ p1, 2, 3, 4q to address
the four components of the Dirac spinor.)

The PL and PR, when acting on a Dirac spinor with 4 components, isolate the left-handed and the
13If the electron was massless, we could make do with just the “left-handed” or “right-handed” version, because

a massless particle travels at the speed of light and hence one cannot “overtake” it by a boost and therefore its
“handedness” (or rather, its chirality), remain unchanged.
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right-handed spinor. We thus introduce a Dirac spinor, i.e., an object with four components

ψD “

¨

˚

˚

˚

˚

˝

ψ1

ψ2

ψ3

ψ4

˛

‹

‹

‹

‹

‚

. (375)

The defining property of a spinor is how it transforms under a Lorentz transformation, see below.
In the above expression, just like when we were writing Dirac matrices, we suppressed the spinor
indices (also called Dirac indices). In general, we will use Latin letters from the beginning of the
alphabet (a, b, . . . ) to denote the spinor indices. Thus, we could write ψaD to make more explicit
that ψD is an object that has four components, labelled by the spinor index.
When we act with the two projectors PR,L, we isolate the upper or lower part of the Dirac-spinor,
such that you will often find a notation such as

ψD “

˜

ξ

χ

¸

(376)

in QFT lecture notes or books. Each of the two-spinors χ and ξ has two components, because it
contains a particle and an antiparticle. Unlike for the scalar field, where we had a choice between
a one-component version (where the particle is its own antiparticle and the field carries no charge)
and a two-component version (more conveniently written as a complex field), for spinors we are
naturally led to a version that contains antiparticles that we distinguish from particles. There is
also a Majorana spinor, for which the particle is its own antiparticle. We will not introduce it here.
Spinors are in general complex (so that they seem to have 8 degrees of freedom – double the number
that is needed to describe a spin 1/2 particle and its spin 1/2 antiparticle. We will see below how
this seeming problem is resolved).

Now we can write how a Lorentz transformation acts on a spinor:
Just like for a scalar field, in the active view of a transformation, we evaluate the field on an
argument which is the inverse transformation, i.e., for a Lorentz transformation Λ, which is defined
by its action on spacetime points, xµ Ñ Λµνxν , we had ϕpxq Ñ ϕpΛ´1xq.
For the scalar field, the factor eiωµνMµν was trivial, because the Mµν are trivial in the scalar
representation. This is no longer the case for spinors, just as it was not for vectors, where we had

Aµ Ñ ΛµνAνpΛ´1xq. (377)

For spinors, we have
ψD Ñ eiω

µνMµνψpΛ´1xq, (378)

where the Mµν are 4x4 matrices, defined through the Dirac matrices, that have the corresponding
indices, i.e.,

eiω
µνMµνψpΛ´1xq Ñ p1 ` iωµνMµνqψpΛ´1xq ` Opω2q. (379)

To get familiar with this, you might consider writing out a concrete example, e.g., a boost along
the z-direction.
Let us emphasize again that the definition of a spinor is a four-component object that transforms
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under a Lorentz transformation as in Eq. (379) with Mµν “ i
4 rγµ, γνs and tγµ, γνu “ 2ηµν1. In

other words, the definition of a spinor follows from the Clifford algebra.
Let us look at an example, namely an infinitesimal Lorentz transformation along the x-axis with
infinitesimal boost parameter θ (which is the rapidity, with θ “ v{c for small θ), just like in
Eq. (42), which we repeat here for convenience:

Λµν “ 1 `

¨

˚

˚

˚

˚

˝

0 θ 0 0
θ 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‹

‹

‚

. (380)

Given a four-vector-field V µpxq with components

V µpxq “

¨

˚

˚

˚

˚

˝

V0pxq

V1pxq

V2pxq

V3pxq

˛

‹

‹

‹

‹

‚

, (381)

the transformed four-vector-field is

V µ
1

pxq “ ΛµνV µpΛ´1xq “

¨

˚

˚

˚

˚

˝

V0pΛ´1xq ` θV1pΛ´1xq

V1pΛ´1xq ` θV0pΛ´1xq

V2pΛ´1xq

V3pΛ´1xq

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

V0pΛ´1xq ` v
cV1pΛ´1xq

V1pΛ´1xq ` v
cV0pΛ´1xq

V2pΛ´1xq

V3pΛ´1xq

˛

‹

‹

‹

‹

‚

, (382)

which is the infinitesimal form of a boost, acting on a four-vector function (hence the argument
of the function also transforms, and we work in the active view of a transformation; hence the
transformation of the argument is with the inverse boost).
Now we consider a spinor field, which is also a four-component object,

ψDpxq “

¨

˚

˚

˚

˚

˝

ψ1pxq

ψ2pxq

ψ3pxq

ψ4pxq

˛

‹

‹

‹

‹

‚

, (383)

but it does not transform according to Eq. (382). Instead, we need to calculate the form of M01

for the spinor-representation, and we must choose ω01 “ ´ω10 “ θ (and all other components
vanishing) and thus we need

M01 “
i

4 rγ0, γ1s “
i

4

˜˜

0 1

1 0

¸

¨

˜

0 σ1

´σ1 0

¸

´

˜

0 σ1

´σ1 0

¸

¨

˜

0 1

1 0

¸¸

“
i

2

˜

´σ1 0
0 σ1

¸

.(384)

Then we can write

ψ1
D “

˜

1 ´
θ

2

˜

´σ1 0
0 σ1

¸¸

¨

˚

˚

˚

˚

˝

ψ1pΛ´1xq

ψ2pΛ´1xq

ψ3pΛ´1xq

ψ4pΛ´1xq

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

ψ1pΛ´1xq ` θ
2ψ2pΛ´1xq

` θ
2ψ1pΛ´1xq ` ψ2pΛ´1xq

ψ3pΛ´1xq ´ θ
2ψ4pΛ´1xq

´ θ
2ψ3pΛ´1xq ` ψ4pΛ´1xq

˛

‹

‹

‹

‹

‚

. (385)
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This is clearly a different transformation rule than for a four-vector function. In particular, we
see that the last two components are also affected by the Lorentz boost, unlike in the case of the
four-vector function.
We do see, however, that the first two and the last two components of the Dirac spinor only mix
among themselves. This is also true for all other Lorentz boost and for rotations. This is because a
Dirac spinor transforms in a reducible representation of the Lorentz group and the last two and the
first two components (that we can project onto with the two projection operators PL{R) transform
separately.

7.2 Dirac action and Dirac equation

To construct an action for spinor fields, we need real, Lorentz-invariant building blocks. A spinor
is in general complex, because we in particular want to describe electromagnetically charged spin-
1/2-particles like the electron and thus we need a field that transforms non-trivially under a U(1)
transformation.14

Thus, we definitely will need a conjugate spinor ψ: “ pψ˚qJ to form a scalar together with ψ

(similarly to a vector and its transposed vector forming a scalar product). Then, ψ:ψ would be
our first building block. To check whether it is, we need the behavior of ψ: under a Lorentz
transformation:

ψpxq Ñ e
i
2ω

µνMµνψpΛ´1xq (386)

“ñ pψ˚qJpxq Ñ pψ˚qJpΛ´1xqep
i
2ωµνM

µνq
:

“ ψ:pΛ´1xqe´ i
2ωµνM

µν :

. (387)

The J operation in pψ˚qJpxq is with respect to the spinor indices. We note that ωµν is just a real
number for any choice of µ, ν, therefore p i2ωµνq˚ “ ´ i

2ωµν . Furthermore, Mµν is the matrix that
carries the spinor indices and on which the :-operation acts nontrivially.
To understand how ψ:ψ transforms, we therefore need to know pMµνq::

Mµν:
“

ˆ

i

4 rγµ, γνs

˙:

“ ´
i

4

”

γν:, γµ:
ı

“
i

4

”

γµ:, γν:
ı

. (388)

We used that pABq: “ B:A: “ñ rA,Bs
:

“
“

B:, A:
‰

. From tγµ, γνu “ 2ηµν , we know that
pγ0q2 “ 1 and pγiq2 “ ´1 (no summation over i implied!) and thus not all γµ can be hermitian
at the same time, because pγ0q2 “ 1 implies that γ0 has real eigenvalues, but pγiq2 “ ´1 implies
that γi has imaginary eigenvalues.
Thus, pMµνq: ‰ Mµν . Therefore

ψ:ψ Ñ ψ:e´ i
2ωµνM

µν :

e
i
2ωµνM

µν

ψ ‰ ψ:ψ, (389)

because the factors inbetween do not cancel. Thus, we need something inbetween ψ: and ψ. We
note that γ0γµγ0 “ pγµq: (which can be checked by plugging in our representation for the γ’s).
Thus,

γ0Mµν:γ0 “ γ0
ˆ

i

4 rγµ, γνs

˙:

γ0 (390)

14Spinors that satisfy a reality condition (and thus do not carry any U(1) charge) are called Majorana spinors.
We will not describe them here.
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“ γ0
ˆ

´
i

4

˙

”

γν:, γµ:
ı

γ0 (391)

“ `
i

4γ
0
”

γµ:, γν:
ı

γ0 (392)

“
i

4

´

γ0γµ:γν:γ0 ´ γ0γν:γµ:γ0
¯

(393)

“
i

4

¨

˝γ0γµ: γ0γ0

±
“1

γν:γ0 ´ γ0γν: γ0γ0

±
“1

γµ:γ0

˛

‚ (394)

“
i

4 pγµγν ´ γνγµq (395)

“ Mµν . (396)

“ñ Mµν:γ0 “ γ0Mµν , (397)

using that pγ0q2 “ 1. Based on this, we define

ψ “ ψ:γ0. (398)

Now we can show that ψψ transforms like a Lorentz scalar.

Mini-Exercise 21. Show that ψψ transforms like a Lorentz scalar.

Solution.

ψ Ñ ψ:pΛ´1xqe´ i
2ωµνM

µν :

γ0.

We expand the exponential and use Mµν:γ0 “ γ0Mµν in each term, then re-exponentiate
again.

ψ:pΛ´1xqe´ i
2ωµνM

µν :

γ0 “ ψ:pΛ´1xqγ0e´ i
2ωµνM

µν

“ ψpΛ´1xqe´ i
2ωµνM

µν

“ñ ψψ Ñ ψpΛ´1xq e´ i
2ωµνM

µν

e
i
2ωµνM

µν

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“1

ψpΛ´1xq “ ψψpΛ´1xq.

Based on this, we might consider
ψB2ψ, (399)

or, equivalently (up to partial integration),

BµψBµψ, (400)

as the kinetic term for spinors. There is one challenge with this, namely the count of degrees of
freedom: To describe a charged spin-1/2-particle, we need four degrees of freedom (left-and right-
handed for particle and antiparticle). However, a four-component complex field has eight degrees
of freedom, if we describe it with second-order equations of motion, because then we expect to
have two sets of creation and annihilation operators for each of the four components. Therefore,
we start wondering whether we can have equations of motion that are just linear in derivatives,
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because this will reduce the number of degrees of freedom by a factor of two.15

There is, in fact a possibility, which is linear in derivatives. This uses that

ψγµψ transforms as a Lorentz vector (401)

and hence ψBµγ
µψ transforms like a scalar. To see that ψγµψ transforms as a vector, we need

rMµν , γρs “ ´
`

M (fund)
µν

˘ σ

ρ
γσ, (402)

where M (fund)
µν are the generators in the fundamental representation (cf. Eq. (44)) which will be

shown in the exercises.
Based on this, it follows that

e´ i
2ωµνM

µν

γρ e
i
2ωµνM

µν

“ pΛ´1q σ
ρ γσ. (403)

Given that Bµ
1

“ ΛµνBν , it follows that ψBµγµψ transforms as a Lorentz scalar.
If we also want to add a mass-term, we use that ψψ is a scalar, and thus we can write the Dirac
Lagrangian:

L “ ψpiγµBµ ´mqψ. (404)

We introduce the shorthand notation {v “v-slash” for vµγµ, so that γµBµ “ {B (“d-slash”).
The Dirac action is accordingly given by

SD “

ż

d4x ψpi{B ´mqψ. (405)

The i is needed for S to be real. To see that it is needed, take the complex conjugate of the action.
In doing so, i becomes ´i and the extra minus is needed to compensate another minus that arises
from a partial integration, which must be done to bring S˚ back into the form of S.
The Dirac equation is the equation of motion that follows. Because ψ is complex, we treat ψ and
ψ: as independent and

0 “
δSD
δψ:pyq

“

ż

d4x δ4px´ yqγ0pi{B ´mqψ “ñ (i{B ´mqψ “ 0 . (406)

This is the Dirac equation. It is the “square-root” of the Klein-Gordon equation in the sense that

piγµBµ `mq piγνBν ´mqψ “ 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Dirac equation

(407)

“ñ
`

γµγνBµBν ´����iγµBµm`����miγνBν ´m2˘ψ “ 0 (408)

Because BµBν is symmetric under exchange of the indices, we have

γµγνBµBν “
1
2γ

µγνpBµBν ` BνBµq (409)

15When we considered the Ostrogradsky theorem, we already saw the opposite result (in the exercises), namely
that for equations of motion that are of third order in time derivatives, there is one additional degree of freedom
per real field.

93



“
1
2

ˆ

γµγνBµBν ` γµγνBνBµ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

relabeling µØν

˙

(410)

“
1
2tγµ, γνuBµBν (411)

“
1
22ηµνBµBν (412)

“ B2. (413)

Therefore,
piγµBµ `mqpiγνBν ´mqψ “ pB2 ´m2qψ “ 0. (414)

Thus, a solution of the Dirac equation also constitutes a solution of the Klein-Gordon equation.

7.3 Solutions of the Dirac equation

When quantizing and defining creation and annihilation operators, we always expand the field in
a complete set of classical solutions (in Fourier space). We did this for the scalar field, where
ϕk „ e˘ikx with k2 “ m2 constitute the solutions to the Klein-Gordon equation; and we did this
for the gauge field, where Aµk „ ε

p1,2q
µ e˘ikx with k2 “ 0 constitute the solutions to the Maxwell

equations.
Similarly, we need a complete set of solutions to the Dirac equation to expand the field in terms of
creation and annihilation operators and quantize. Because any solution to the Dirac equation also
solves the Klein-Gordon equation, we know that the solutions contain plane waves e˘ikx. However,
just like for the photon field, we need the polarization vectors to take care of the spacetime index
µ of Aµ, we need to figure out how the spinor index is constrained by the requirement f solving
the Dirac equation.

We make the ansatz
ψpxq “ uppqe´ipx with p2 “ m2 (415)

and choose p0 ą 0 (note that if p0 ą 0 or p0 ă 0 are both treated simultaneously, e´ipx gets
mapped to eipx). Below, we will consider the solutions eipx (with p0 ą 0) separately. uppq is a
spinor, i.e., it has 4 components and a spinor index. Just like for the gauge field, the requirement
of solving the Maxwell equations constrains the structure of polarization vectors (e.g., making
them transverse to the direction of propagation), the requirement of solving the Dirac equation
constrains uppq. The Dirac equation reads:

0 “ pi{B ´mqψpxq “ pip´i{pq ´mquppqe´ipx (416)

“ñ p{p´mquppq “ 0. (417)

Re-instating Dirac indices (for which we use Latin letters), we have

ppµγ
µ
ab ´m1abqu

bppq “ 0. (418)

This makes it clear, that p{p ´ mquppq “ 0 imposes a non-trivial requirement that relates the
4 components of the spinor to each other. To figure out what this looks like, we use Lorentz
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invariance to our advantage: We go to a frame in which p “ pm, 0⃗q, where

p{p´mquppq “ 0 “ñ mpγ0 ´ 14quppq “ 0. (419)

14 is a 4 ˆ 4 matrix. In terms of 2 ˆ 2 matrices 12x2, this reads
˜

´12x2 12x2

12x2 ´12x2

¸

uppq “ 0. (420)

The fact that the previous equation is built out of 2 ˆ 2 matrices suggests that it makes sense to
write

uppq “

˜

ξ

ξ1

¸

, where ξ and ξ1 are both 2-component spinors. (421)

(These are the Weyl spinors). Then mpγ0 ´ 1quppq “ 0 implies a relation between ξ and ξ1.

Mini-Exercise 22. What is the relation between ξ and ξ1?

Solution.
˜

´1 1

1 ´1

¸˜

ξ

ξ1

¸

“ 0

“ñ ´ξ ` ξ1 “ 0

In other words, to have a solution to the Dirac equation, the first two and last two components of
the Dirac spinor have to be related to each other. We remember that these are the left-handed and
the right-handed irreducible spin-1{2-representations of the Lorentz group, respectively. It makes
sense that if we’re putting them together to describe a spin-1{2-field with mass (such that, depen-
dent on the Lorentz frame, the spin is either aligned with the direction of travel (right-handed) or
anti-aligned (left-handed)), that we then cannot choose the components independently, but they
have to be related to each other.

The 4 components are the particles (e.g., electron), in both left- and right-handed version, and its
antiparticles (e.g., the positron), in both the left- and right-handed version. (For a spinor that is
its own antiparticle, we can correspondingly use 2-component (Majorana) spinors.)

We proceed with the explicit construction of the solutions. Since the space of 2-spinors is a 2-d-
space (because they have two independent components), we have

ξ1 “

˜

1
0

¸

and ξ2 “

˜

0
1

¸

, (422)

such that

u1ppq „

˜

ξ1

ξ1

¸

and u2ppq „

˜

ξ2

ξ2

¸

. (423)

We use the Latin letter s to denote the choice between ξ1 and ξ2, i.e., we write usppq, s “ 1, 2.
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It is convenient to normalize

usppq “
?
m

˜

ξs

ξs

¸

(424)

in the frame in which p “ pm, 0⃗q.
The solution in any other frame can be obtained by the corresponding Lorentz transformation
acting on usppq. Now we still have the second set of solutions, with e`ipx and p0 ą 0. These are
called negative-frequency solutions, whereas e´ipx are the positive frequency solutions. The e`ipx

have negative energy if we plug them into the expression for the conserved energy from Noether’s
theorem.
We write these solutions as

ψpxq “ vppqeipx, p2 “ m2, p0 ą 0. (425)

In this case
pi{B ´mqψpxq “ 0 “ñ p{p`mqvppq “ 0, (426)

i.e., there is a difference in the relative sign between {p and m compared to the u’s.
In matrix notation

˜

1 1

1 1

¸

vppq “ 0. (427)

Hence we can write

vsppq “
?
m

˜

ηs

´ηs

¸

, s “ 1, 2 (428)

with

η1 “

˜

1
0

¸

and η2 “

˜

0
1

¸

(429)

(in a frame where p “ pm, 0⃗q; the solution in any other frame is obtained by the corresponding
Lorentz transformation.)
Note that the different sets of solutions satisfy orthonormality relations (which we will check in
the exercises):

urppqusppq “ 2mδrs (430)

vrppqvsppq “ ´2mδrs (431)

urppqvsppq “ 0 (432)

vrppqusppq “ 0. (433)

The factor of 2m is due to our choice of normalization.
Note: We constructed the explicit expression for the spinors in one particular frame, and can also
check the left-hand-side of the orthonormality relations in that frame. The right-hand-side is a
Lorentz scalar and this the orthonormality relations hold in this form in all frames.

In addition to these orthonormality relations, there is also a form of “completeness relation”, in
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which p{p`mq and p{p´mq are rewritten in terms of u’s and v’s:

p{p`mq β
α “

2
ÿ

s“1
pusppqqαpusppqqβ . (434)

α and β are spinor indices. We interpret pusppqqα as a column vector and pusppqqβ as a row vector,
therefore their product is a matrix.
Similarly,

2
ÿ

s“1
vsppqvsppq “ {p´m, (435)

where we suppress the Dirac indices, but the relation is again between two objects that are both
matrices in Dirac indices.

7.4 Quantization of spinors

Here, we will only perform the canonical quantization of spinors. The path-integral quantization
will be done in QFT II and will require us to introduce a new type of numbers, namely anticom-
muting numbers (called Grassmann numbers).
For the canonical quantization, we first need the Hamiltonian. Starting from

L “ ψpi{B ´mqψ, (436)

it follows that
Πa “

BL
B 9ψa

“
B

B 9ψa

´

iψ:γ0γ0 9ψ
¯

“ ipψ:pγ0q2qa “ ipψ:qa. (437)

We note that the Lagrangian can be expressed in terms of ψ and Π without the need to intro-
duce a canonically conjugate field for ψ:. This is different from the complex scalar field, where a
canonically conjugate field was needed for ϕ and for ϕ˚, reflecting the fat that there are two sets of
degrees of freedom (associated to particle and antiparticle). In the case of the spinor field, the fact
that the Dirac equation is first order results in a reduction of degrees of freedom. This is exactly
what we need - if we had the full eight degrees of freedom associated to a complex 4-component
field, that would be too many degrees of freedom.

Thus, the Hamiltonian density is

H “ Π 9ψ ´ L “ iψ: 9ψ ´ ψ:γ0pi{B ´mqψ (438)

“ ´ψ:γ0piγiBi ´mqψ (439)

“ iΠ γ0piγiBi ´mqψ. (440)

Now, we expand the field in terms of creation and annihilation operators:

ψpxq “

ż

d3p

p2πq3
1

2ωp⃗

ÿ

s“1,2

´

asp⃗ usppqe´ipx ` bs:

p⃗ vsppqeipx
¯

(441)

and now have the choice between imposing commutation or anticommutation relations.
Let us first summarize what goes wrong if we use commutators:
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1) Imposing
rψpx⃗q,Πpy⃗qs “

“

ψpx⃗q, iψ:py⃗q
‰

“ iδ3px⃗´ y⃗q1 (442)

(1 in spinor indices) is not consistent with
”

asp⃗, a
r:

q⃗

ı

“ p2πq3δ3pp⃗´ q⃗qδrs ¨ 2ωp⃗ “

”

bsp⃗, b
r:

q⃗

ı

. (443)

If we express ψpx⃗q and ψ:px⃗q through a’s and b’s and calculate
“

ψpx⃗q, iψ:py⃗q
‰

by using
Eq. (443), we do not obtain Eq. (442). The completeness relation for the u’s and v’s is
crucial here:

“

ψpx⃗q, ψ:py⃗q
‰

“
ż

d3p

p2πq3
1

2ωp⃗

ÿ

r,s

´

eip⃗¨x⃗e´iq⃗¨y⃗usppqu:
rpqq

”

asp⃗, a
r:

q⃗

ı

` e´ip⃗¨x⃗eiq⃗¨y⃗vsppqv:
rpqq

”

bs:

p⃗ , b
r
q⃗

ı¯

(444)

“

ż

d3p

p2πq3
1

p2ωp⃗q2

ÿ

s,r

´

usppqu:
rppqδrse

ip⃗¨px⃗´y⃗q ´ vsppqv:
rppqδrse

´ip⃗¨px⃗´y⃗q
¯

¨ 2ωp⃗. (445)

Now we use

ÿ

s

usppqu:
sppq “ p{p`mqγ0 and (446)

ÿ

s

vsppqv:
sppq “ p{p´mqγ0, (447)

which follow from the completeness relations. Therefore,

“

ψpx⃗q, ψ:py⃗q
‰

“

ż

d3p

p2πq3
1

2ωp⃗

ˆ

eip⃗¨px⃗´y⃗qp{p`mq ´ e´ip⃗¨px⃗´y⃗qp{p´mq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p⃗Ñ´p⃗

˙

γ0 (448)

“

ż

d3p

p2πq3
eip⃗¨px⃗´y⃗q

2ωp⃗

ˆ

���p0γ
0 ` piγ

i `m´
`

���p0γ
0 ´ piγ

i ´m
˘

qγ0. (449)

We note that p0γ
0 is unchanged by the sign flip, whereas piγi is changed by the sign flip.

Finally, we arrive at

“

ψpx⃗q, ψ:py⃗q
‰

“

ż

d3p

p2πq3
eip⃗¨px⃗´y⃗q

2ωp⃗
`

2piγi ` 2m
˘

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p‹q

γ0 ‰ iδ3px⃗´ y⃗q1, (450)

which we postulated for this commutator. We would have needed the p0-term to cancel ωp⃗,
but instead it dropped out. The terms marked with p‹q prohibit us from forming a δ-function.

The problem lies with the b-terms and can be solved if we assume that
”

bsp⃗, b
r:

q⃗

ı

“ ´p2πq3δ3pp⃗´ q⃗qδrs ¨ 2ωp⃗, (451)

i.e. we introduce an additional sign, which effectively amounts to exchanging the roles of b
and b:.
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2) Going into the calculation of H “
ş

d3xH with the b-commutator with negative sign, we find

H “

ż

d3p

p2πq3 ωp⃗
ÿ

s

´

as:

p⃗ a
s
p⃗ ´ bs:

p⃗ b
s
p⃗

¯

. (452)

The energy is unbounded form below, which means that the ground state is unstable. This
is a serious problem and means that we have to find a different way of quantizing.

We next try anticommutators, i.e., we demand

tψpx⃗q,Πpy⃗qu “ ψpx⃗qΠpy⃗q ` Πpy⃗qψpx⃗q “ iδ3px⃗´ y⃗q1. (453)

Then, the creation/annihilation operators satisfy
!

arp⃗, a
s:

q⃗

)

“

!

brp⃗, b
s:

q⃗

)

“ p2πq32ωp⃗δ3pp⃗´ q⃗qδrs (454)

and the other anticommutators are zero. You can check that Eq. (453) and Eq. (454) are consistent
with each other.
In addition, we also find a Hamiltonian that is bounded from below:

H “

ż

d3p

p2πq3
1

2ωp⃗
ωp⃗

ÿ

s

´

as:

p⃗ a
s
p⃗ ` bs:

p⃗ b
s
p⃗

¯

, (455)

where we have dropped an infinite constant.
But what is the physical meaning of what we have done? We can see that, when we built the
Fock space, starting from the ground state |0y for which asp⃗ |0y “ 0 “ bsp⃗ |0y, an interesting result
holds:

Mini-Exercise 23. 1) What is
´

as:

p⃗

¯2
|0y?

2) What is as:

p⃗1
as:

p⃗2
|0y ` as:

p⃗2
as:

p⃗1
|0y?

3) What do your results mean at the physical level?

Solution.

1)
!

as:

p⃗ , a
r:

q⃗

)

“ 0 “ñ

´

as:

p⃗

¯2
“

1
2

!

as:

p⃗ , a
s:

p⃗

)

“ 0 “ñ

´

as:

p⃗

¯2
|0y “ 0.

Ñ This is the Pauli-exclusion principle. We cannot have two particles with the same
spin (s “ 1 or s “ 2) and the same momentum.

2)
!

as:

p⃗1
, as:

p⃗2

)

“ 0 “ñ |p⃗1, s; p⃗2, sy “ as:

p⃗1
as:

p⃗2
|0y “ ´ |p⃗2, s; p⃗1, sy ,

i.e., the states are antisymmetric under the exchange of two particles.

3) We are dealing with fermions, i.e., particles which obey the Pauli exclusion principle and
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more general antisymmetry of the state under the exchange of any two particles (from
which the Pauli principle follows).

Thus, we have that:

• spin-1{2-fields must be quantized with anti-commutators and cannot be quantized with com-
mutators. At the physical level, this mathematical property implies that spin-1{2-fields give
rise to fermions, i.e., particles have wavefunctions that are antisymmetric under exchanges
of two particles and obey the Pauli principle.

• We already say that the correct way to quantize scalar fields and vectors (which have integer
spin- 0 and 1, respectively) is with commutators.

We will not prove it here, but there is the spin-statistics theorem that states:
(Half-)integer spin fields must be quantized with (anti-)commutators. As a consequence, particles
corresponding to half-integer spin fields are fermions, and particles corresponding to integer-spin
fields are bosons.

7.5 Up1q symmetry of the Dirac Lagrangian

When discussing the degrees of freedom of the Dirac spinor ψD, which satisfy the Dirac equations,
we already used that it describes a spin-1{2-particle together with its antiparticle. But what is
actually the associated charge and the corresponding symmetry?
It turns out that L “ ψpi{B ´mqψ is invariant under a global Up1q symmetry, under which

ψ Ñ e´iαψ “ ψ1, ψ Ñ e`iαψ “ ψ
1
, (456)

and, infinitesimally,
δψ “

1
α

pψ1 ´ ψq “ ´iψ (457)

such that
L1 “ ψ

1
pi{B ´mqψ1 “ L. (458)

Noether’s theorem states that

jµ “
BL

BpBµψq
δψ

“̄´iψ

´pL1 ´ L´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
“0

q (459)

“ ψiγµp´iψq “ ψγµψ (460)

is conserved. If we decide to make the symmetry local, ψ Ñ eiαpxqψ, we will find that the local
transformation is not a symmetry, unless we couple the fermions to a gauge field. When we link the
U(1) symmetry of the fermions to the gauge symmetry of the gauge field, we are free to introduce
a dimensionless coupling constant e in the transformation of the fermion, so that

ψpxq Ñ ei e αpxqψpxq. (461)

Then,
LD “ ψip{B ` ieγµAµ ´mqψ “ ψip{B ` ie {A´mqψ (462)
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is invariant under a local Up1q. We can see that e governs the strength of the interaction between
ψ and Aµ, and that, as e Ñ 0 the interaction is switched off (as is the transformation of ψ under
the U(1) in this limit).
The complete Lagrangian for Quantum Electrodynamics reads

LQED “ ψip{B ` ie {A´mqψ ´
1
4FµνF

µν . (463)

We already know how to quantize the two individual free parts, namely the Dirac Lagrangian
and the Lagrangian for electrodynamics. However, for the interaction term, e ψ̄ {Aψ, we need to go
beyond the quantization of the free theory. One possibility would be to do this in the path-integral
formalism, but we have not discussed fermions in the path-integral formalism yet.
Instead, we will now develop scattering theory to describe one effect of interactions, namely that
they give rise to scattering of particles off each other.
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8 Scattering Theory, perturbation theory and Feynman rules

One of the key goals of QFT is to predict the results of scattering experiments, e.g., at the Large
Hadron Collider (LHC). For non-trivial scattering, interactions must be present. We will develop
the corresponding formalism now. Whenever we need a specific example, we will consider λϕ4-
interactions, i.e., we will use the scalar Lagrangian

L “
1
2BµϕBµϕ´

m2

2 ϕ2 ´
λ

4!ϕ
4 (464)

as our “workhorse”.

We add a ϕ4 term, because it is the next term in a Taylor expansion of the potential V pϕq, if
we restrict to Z2-symmetry ϕ Ñ ´ϕ in order to prevent uneven terms that make the potential
unbounded from below, such as ϕ3 or ϕ5.
At this point, our choice of interaction may seem a bit ad-hoc, because there seem to be so
many other choices (e.g., BµϕBµϕ2, or ϕ6, or pBµϕBµϕq2). In QFT II, when we learn about the
Renormalization Group and about effective field theories, we will see that λϕ4 generically is the
dominant term at energies far below the Planck scale, even if other terms are present at higher
energies.
In short, this can be motivated from dimensional analysis: In ℏ “ 1 “ c, we can assign dimensions
of mass (or energy – these have equal dimension in these units) to everything. For instance, the
action must be dimensionless (i.e., have no units). We write angular brackets around a quantity
to indicate the dimension of this quantity, e.g., rSs “ 0. Now let us consider the building blocks of
the action: In units ℏ “ 1 “ c, rd4xs “ mass´4. Therefore, the Lagrangian must have dimension
4. Let us first consider the kinetic term. Each derivative has dimension 1, and from this, we can
infer the dimension of the field:

rϕs “
4 ´ 2

2 “ 1, (465)

where the 4 is the dimension of the Lagrangian, and we are subtracting a 2, because each of
the derivatives contributes with dimension 1. Finally, we divide by 2, because there are two
fields.

Mini-Exercise 24. What is the dimension of the mass, m2? What is the dimension of λ?
And what is the dimension of λn in a higher-order interaction term λnϕ

n, with n ą 4?

Solution. rm2s “ 4 ´ 2 “ 2, which is consistent with the fact that this quantity is supposed
to be the square of a mass.
rλs “ 4 ´ 4 “ 0.
rλns “ 4 ´ n, which is negative for n ą 4.

Let us now imagine that we are computing the contribution of λ and λn to a scattering process, in
which the center-of-mass-energy is E. We express both their contributions through dimensionless
parameters, in order to be able to compare them to each other. λ is already dimensionless, so that
is simple, but λn is not. How can we make it dimensionless? We have the center-of-mass energy
E at our disposal, and can write λn ¨ En´4 to obtain a dimensionless quantity. We see that if E
is large, this contribution becomes large, but, if E is small, this contribution is small. This, in
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essence, is, why we work with the couplings of highest mass dimension. At low enough energies,
these are the dominant terms in the Lagrangian.
These arguments will be formalized and made more precise when we study the Renormalization
Group in QFT II. There, we will see that the Standard Model Lagrangian is not some arbitrary
choice, but contains all highest-dimension interactions between the existing fields. In other words,
it is the generic approximation at low energies, irrespective of what other interactions are important
at higher energies.

8.1 Interaction picture

We will work in the interaction picture for some parts of what we will do below. In analogy to the
Heisenberg picture, it can be derived from the Schrödinger picture.

Let’s first remind ourselves how that worked in Quantum Mechanics:
The Hamiltonian is split into two parts, a free part H0 and an interaction part Hint, so
H “ H0 `Hint. Then

OIptq “ eiH0tOe´iH0t (466)

is the time evolution of an operator O in the interaction picture, given the time-independent
operator O in the Schrödinger picture. In other words, operators evolve with the free Hamiltonian.
For the state, we start with the state at t “ 0 in the Schrödinger picture and write

ˇ

ˇψIptq
D

“ eiH0te´iHt |ψy , (467)

with |ψy “ |ψpt “ 0qy in the Schrödinger picture.

In this way, expectation values and other measurable quantities have the same time-evolution as
in the Schrödinger picture (as they have to!), namely

@

ψI
ˇ

ˇOI
ˇ

ˇψI
D

“ xψ|eiHt e´iH0teiH0t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“1

O e´iH0teiH0t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“1

e´iHt|ψy . (468)

In our case of ϕ4-theory, we define
L “ L0 ` Lint, (469)

i.e., L0 “ 1
2 BµϕBµϕ´ m2

2 ϕ2 and Lint “ ´ λ
4!ϕ

4 and accordingly

H “ H0 ` Hint, (470)

such that Hint “ λ
4!ϕ

4 (which is identical to Lint up to a sign).

We are now interested in the time-evolution from any time t to another time t1, in the presence of
this interaction. To this end, we write the time evolution of the state from 0 to t1 and from t to 0
separately:

ˇ

ˇψIpt1q
D

“ eiH0t
1

e´iHt1

|ψy (471)
ˇ

ˇψIp0q
D

“ eiHte´iH0t
ˇ

ˇψIptq
D

. (472)
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In combination:
ˇ

ˇψIpt1q
D

“ eiH0t
1

e´iHt1

eiHte´iH0t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Upt1,tq

ˇ

ˇψIptq
D

. (473)

Upt1, tq “ eiH0t
1

e´iHpt1
´tqe´iH0t is the unitary time-evolution operator.

Of course we would like to summarize the factors in the several different exponentials into one.
To do so, we can proceed very similarly to one of the steps we used in the derivation of the path
integral, and split the interval from t to t1 into n steps of duration ∆ “ t1

´t
n . Then

Upt1, tq “ Upt1, t1 ´ ∆q ¨ Upt1 ´ ∆, t1 ´ 2∆q . . . Upt` ∆, tq. (474)

In each individual step, we can use the Baker-Campbell-Hausdorff (BCH) formula

eiH0∆e´iH∆ “ eipH0´Hq∆`Op∆2
q “ e´iHint∆`Op∆2

q (475)

and neglect higher-order corrections in ∆ in the exponential, because at each order of the Taylor-
expansion of the exponential, these terms will contribute at higher order in ∆.
This allows us to rewrite

Upt` ∆, tq “ eiH0pt`∆qe´iH∆e´iH0t (476)

“ eiH0teiH0∆e´iH∆e´iH0t (477)

«
Ò

BCH

eiH0te´iHint∆e´iH0t “ e´iHI
intptq∆. (478)

In the last step, we also introduced the interaction Hamiltonian in the interaction picture,

HI
intptq “ eiH0tHinte

´iH0t. (479)

In total we get (note that HI
intptq always appears with an argument; the parentheses indicate

functional dependence and do not denote multiplication):

Upt1, tq « e´iHI
intpt1

´∆q¨∆e´iHI
intpt1

´2∆q¨∆ . . . e´iHI
intptq¨∆ (480)

« Te´iHI
intpt1

´∆q¨∆ . . . e´iHI
intptq¨∆ (481)

« Te´iHI
intpt1

´∆q¨∆´...´iHI
intptq¨∆ (482)

“ Te´i
şt1

t
dt2HI

intpt2
q. (483)

The final result is called Dyson’s formula:

Upt1, tq “ Te´i
şt1

t
dt2HI

intpt2
q. (484)

We introduced a time-ordering operator here, that we already used when discussing time-ordered
correlation functions. We recall the definition here:

TOpt1qOpt2q “

$

&

%

Opt1qOpt2q, t1 ě t2

Opt2qOpt1q, t2 ą t1.
(485)
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In our case

HI
int “ eiH0tHinte

´iH0t “ eiH0t

ż

d3x
λ

4! pϕpx⃗qq
4

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Hint

e´iH0t “

ż

d3x
λ

4!
`

ϕIpx⃗q
˘4
, (486)

where ϕIpx⃗q denotes the interaction-picture field. In the last step we introduced the interaction-
picture field. Note that because interaction-picture operators evolve just with the free Hamiltonian,
the interaction-picture field is the same as the Heisenberg-picture field. This will allow us to use
some of our results from our study of the free theory.
In Dyson’s formula, we can expand the final exponential and write

Upt, t1q “ 1 ´ i

ż t1

t

dt2HI
intpt2q ` p´iq2

ż t1

t

dt2
ż t2

t

dt3 HI
intpt2qHI

intpt3q ` ... (487)

This is ultimately a formal power series in λ. The first non-trivial term, „ λ, contains four powers
of ϕI . This operator contains a and a: and can thus create or destroy one particle. Therefore,
λpϕIq4 gives rise to the scattering of three particles into one (or one into three), or, most commonly
considered (see below) two into two.
Now, we are ready to discuss scattering.

8.2 Scattering matrix or S-matrix: a first glimpse

We will now develop the theoretical description of scattering events, which will lead us to the
Feynman diagrams. Feynman diagrams are actually diagrammatic ways of encoding a precise
calculation, but they also have the advantage that they are quite intuitive. For instance,

p1

p2

p3

p4

denotes a Feynman diagram in which two particles (with momentum p1 and p2, respectively), scat-
ter into two other particles with momenta p3 and p4. Time increases from left to right in Feynman
diagrams. However, the Feynman diagram is not a sketch of the process, instead, it is a graphical
way of depicting the calculation of the corresponding probability amplitude, and thus each element
of such a diagram has a rule attached to it that allows us to go back and forth between an equation
and a diagram. We will derive these rules over the coming lectures.

Before doing so, let us describe scattering more generally. We start with 2-2-scattering. This is
motivated by the interaction term that we are considering, λ

ş

d4x ϕ4, which includes terms of the
type a:

p⃗11
, a:

p⃗21
, ap⃗1 , ap⃗2 , which annihilate a particles with p⃗1 and one with p⃗2, and in their place

create two new particles, one with p⃗11 and one with p⃗21 . (We already conjecture that at higher
order in λ, we can describe 2-n-scattering, with n ą 2. We also saw this in our study of the effective
potential, where a ϕ6 term was generated at Opλ3q.
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In order to be able to describe a scattering event, i.e., an event with incoming and outgoing
particles, the particles need to be (somewhat) localized, so we will be considering wavepackets, not
plane waves. It also requires the particles to be separated and not interacting with each other at
early and late times.
We thus depict scattering in a sketch (not a Feynman diagram) like this one:

time
t t1

p1

p2

p1
1

p1
2

Figure 9: Sketch of 2-2-scattering. The particles interact inside the “blob”, but they are initially
and finally well-separated, so there is no interaction between them.

To provide the transition amplitude between initial and final state, it seems appropriate to define
the scattering-matrix element:

Sfi “
@

p1
1p

1
2
ˇ

ˇT exp
ˆ

i

ż

d4x LIint

˙

|p1p2y . (488)

This seems appropriate, because the free single-particle states are time independent in the inter-
action picture and because our initial and final states contain only free (non-interacting theory)
particles.

However, as we will see below, while such a definition is fully correct in QM, it is not in QFT. The
reason is something that we already encountered twice (in the Casimir effect and in the calculation
of the vacuum expectation value of the field from the effective potential) namely that in QFT,
even the vacuum is non-trivial. Intuitively speaking, this is due to virtual particles (or, in the
path-integral formalism, off-shell field configurations, i.e., those that do not satisfy the classical
equations of motion). As a single particle propagates through the vacuum, the interaction term
λϕ4 allows it to interact with the virtual particles. Therefore, the single particles that participate
in the scattering event always feel the effect of the interaction term λϕ4, even when they are far
away from each other and not interact with each other. To properly describe a single particle in a
QFT, we will develop the LSZ formalism (Lehmann-Symanzik-Zimmermann).

8.3 Källen-Lehmann spectral representation of the propagator

Useful reading: lecture notes on QFT by Timo Weigand; chapters 5 and 13 in Srednicki.

In a non-interacting QFT, we could solve the classical equations of motion, and then write the
quantum field in terms of creation and annihilation operators, which are the prefactors of the clas-
sical solutions. On this basis, we could construct the full Fock space and understand how the field
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operator acts on the vacuum and see that it creates a single (free) particle. This no longer works
in an interacting QFT, because step one (finding the classical solutions) in general no longer works.

In short, ϕpxq|0y is not a single-particle state, but ϕpxq also creates multi-particle states.
The first effect of interactions that we will encounter is therefore on the propagator, or two-point
correlation function (or two-point correlator). We already considered the two-point-correlator
x0|ϕpxqϕpyq|0y in q. (168), for the free theory. Now we will investigate what it looks like in the
interacting theory. We work in the Heisenberg picture for this. From our considerations of the
effective potential, we already know about renormalization, i.e., the actual mass of a particle in
the interacting theory is not equal to the mass-parameter in the Lagrangian. To be clear about
this difference, we will call the mass of the free field m0. Similarly, there will actually be a change
in the normalization of the field, thus we denote the free field by ϕ0 and the interacting field by ϕ.
We had the result that

x0|ϕ0pxqϕ0pyq|0y “

ż

d3p

p2πq3
1

2ωp⃗
e´ippx´yq, (489)

which can be rewritten as

x0|ϕ0pxqϕ0pyq|0y “

ż

d4p

p2πq3 e
´ippx´yqδpp2 ´m2

0qΘpp0q “ Dpx´ y;m0q. (490)

Here we used the same rewriting that we also used in the derivation of a Lorentz-invariant inte-
gration measure in Chapter 3. We are now denoting the propagator as Dpx´ y;m0q, to make the
mass explicit; previously, we just wrote Dpx´ yq for the same expression.

In the Fourier transform of the free propagator, Eq. (490), we see a delta function contribution
at p2 “ m2, i.e., the propagator in Fourier space has a pole at the location of the mass. For the
propagator in the free theory, this is all that happens, because the correlation between the value
of the field at two points is just related to a single particle propagating from one point to the other.

Now, we are interested in understanding the analogous object in the interacting theory, i.e.,
x0|ϕpxqϕpyq|0y. Before we evaluate what the right-hand-side looks like, let us consider what we
can expect:

• we expect a prefactor compared to the free case that accounts for the change of normalization
of the free field

• we expect that there is not just the free-particle pole, but that there is additional structure
in the propagator, which accounts for the effect of interactions: first, above p2 “ 4m2, there
is sufficient energy available to create multi-particle states. States with two particles exist
for all values p2 ě 4m2, i.e., there is a continuum of states there. Second, in an interacting
theory, bound states can form. In a bound state consisting out of two particles, p2 ă 4m2,
because the bound-state energy is negative.

We will now investigate the structure of the propagator in a general way that holds irrespective of
the specific form of the interaction and without relying on perturbation theory.
We calculate

x0|ϕpxqϕpyq|0y “
ÿ

α

x0|ϕpxq |αyxα|ϕpyq |0y , (491)
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where we used
ř

α |αyxα| “ 1. The label α labels all states, including multi-particle states (includ-
ing bound states). We use the label “α” to denote a summation over the continuous parameters
characterizing the different states (e.g., momentum), but also discrete parameters (e.g., the number
of particles in a bound state). Thus “

ř

α” denotes a sum over all such discrete and an integral
over all continuous parameters. To bring this into a form which we can most directly compare to
the free case, we write

ϕpxq “ eiP̂xϕp0qe´iP̂x, (492)

where for once we denote the momentum operator P̂ with a hat, to make it clear that we are
considering an operator. (We have used that eiP̂x generates a spacetime translation, i.e., P̂ is the
generator of spacetime translations). We also have that e´iP̂x |αy “ e´ipαx |αy, i.e., the states |αy

are momentum-eigenstates with momentum pα. Finally, we use that the vacuum is translationally
invariant, eiP̂x|0y “ |0y. Thus

x0|ϕpxqϕpyq|0y “
ÿ

α

x0| eiP̂xϕp0qe´iP̂x |αyxα| eiP̂xϕp0qe´iP̂ y |0y (493)

“
ÿ

α

x0|ϕp0qe´ipαx |αyxα| eipαyϕp0q |0y (494)

“
ÿ

α

e´ipαpx´yq|x0|ϕp0q |αy|
2 (495)

“

ż

d4q
ÿ

α

e´ipαpx´yqδ4pq ´ pαq|x0|ϕp0q |αy|
2 (496)

“

ż

d4q

p2πq3 e
´iqpx´yqρpqq, (497)

where we defined
ρpqq “ p2πq3

ÿ

α

δ4pq ´ pαq|x0|ϕp0q |αy|
2
. (498)

Because there are no single- or multi-particle states with negative energy, q0 ă 0, we can write

ρpqq “ Θpq0qσpq2q, (499)

with the spectral density σpq2q. It quantifies the contribution of the states |αy to the propagator.
We can rewrite a bit further to understand the contribution of |αy’s with different masses:

x0|ϕpxqϕpyq|0y “

ż 8

0
dM2

ż

d4q

p2πq3 e
´iqpx´yqδpq2 ´M2q Θpq0qσpM2q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ρpqq

. (500)

We rewrote σpq2q “
ş8

0 dM2 δpq2 ´M2qσpM2q. (Note that M2, not M , is our integration variable,
so this is different from

ş8

0 dM δpq2 ´M2qσpM2q, where we would have extra factors.)
We get back to the free-field case for σpM2q “ δpq2 ´ m2

0q. In general, σpM2q contains the
one-particle contribution with an (as of yet unknown) normalization factor Z,

σpq2q “ Z δpq2 ´m2q ` . . . pm2 ‰ m2
0q (501)

and further contributions, indicated by the dots. In general we expect the result sketched in Fig. 10.
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q2

σpq2q

m2

bound states (resonances)

4m2

N -particle states

Figure 10: In addition to the single-particle peak at q2 “ m2, there is an N -particle continuum
for q2 ą 4m2. Further, just below this point, there are bound states (or resonances), for which
the total energy (due to negative binding energy) is slightly below 4m2. The onset of these bound
states is the multiparticle threshold, M2

t .

Given the structure of σpq2q, it makes sense to split off the single-particle contribution in
ř

α and
write

ÿ

α

|αyxα| “

ż

d3p

p2πq3
1

2ωp⃗
|pyxp| ` multi-particle (502)

and thus

x0|ϕpxqϕpyq|0y “

ż

d3p

p2πq3
1

2ωp⃗
x0|ϕpxq |py
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

“e´ipxx0|ϕp0q|py

xp|ϕpyq |0y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

“eipyxp|ϕp0q|0y

`multi-particle (503)

“

ż

d3p

p2πq3
1

2ωp⃗
e´ippx´yq |x0|ϕp0q |py|

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“:Z

` . . . (504)

“ Dpx´ y,mqZ ` . . . (505)

In the last step, we used that Z does not depend on p and can therefore be pulled out of the
integral. The fact that it does not depend on p follows from Lorentz invariance:

x0|ϕp0q |py “ x0| Λ:

²
boosted
vacuum

ϕp0q Λ
ˇ

ˇp1
D

²
boosted

1-particle
state

, (506)

with Λ:ϕp0qΛ “ ϕp0q, where we used that the scalar field transforms in the trivial representation
of the Lorentz group.
Thus,

x0|ϕpxqϕpyq|0y “ Z ¨Dpx´ y,m2q `

ż 8

M2
t

dM2 σpM2qDpx´ y,M2q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p‹q

. (507)
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For p‹q, we used
ż 8

M2
t

dM2
ż

d4q

p2πq3 e
´iqpx´yqδpq2 ´M2qΘpq0q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dpx´y,M2q

σpM2q. (508)

This is the Källen-Lehmann spectral representation of the correlator. Remember that x0|ϕpxqϕpyq |0y

is the correlator of the field at two spacetime points and in the free theory corresponds to the prob-
ability amplitude for a particle (generated by acting with ϕpyq on the vacuum) to propagate to x.
In the interacting theory, the correlation function has another contribution, namely from multi-
particle states, i.e., ϕ creates not only 1-particle states.

Thus, we expect that Z ă 1, because there is an extra contribution from multi-particle states,
which is absent in the free theory. Let us show that Z ă 1 indeed holds:
We consider

x0|rϕpxq, ϕpyqs|0y “ x0|ϕpxqϕpyq|0y ´ x0|ϕpyqϕpxq|0y (509)

“ Z
`

Dpx´ y,m2q ´Dpy ´ x,m2q
˘

(510)

`

ż 8

M2
t

dM2 σpM2q
`

Dpx´ y,M2q ´Dpy ´ x,M2q
˘

. (511)

We can write this as

Dpx´ y,m2q ´Dpy ´ x,m2q “ x0|rϕ0pxq, ϕ0pyqs|0y , (512)

because this corresponds to the expectation value of the commutator in the free theory. Because
this expression will continue to be important, we denote it by its own letter:

x0|rϕ0pxq, ϕ0pyqs|0y “ ∆px´ y,m2q, (513)

where we also make the mass explicit. Thus,

x0|rϕpxq, ϕpyqs|0y “ Z∆px´ y,m2q `

ż 8

M2
t

dM2 σpM2q∆px´ y,M2q. (514)

Note that the mass of ∆ under the integral is M2. Now we would like to use the commutation
relation of the free theory, where the subscripts “0” on the fields denote that these are the field
operators in the free theory:

“

ϕ0px0, x⃗q,Π0px0, y⃗q
‰

“ iδ3px⃗´ y⃗q (515)

to isolate the factor of Z. We use that B
By0

ˇ

ˇ

ˇ

y0“x0
ϕ0pyq “ 9ϕ0px0, y⃗q “ Π0px0, y⃗q.

Thus, we act with B
By0

ˇ

ˇ

ˇ

y0“x0
on Eq. (514) and obtain

x0|
“

ϕpxq,Πpx0, y⃗q
‰

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
by definition of

our quantization
procedure, this is

also iδ3
px⃗´y⃗q

|0y “ Ziδ3px⃗´ y⃗q `

ż 8

M2
t

dM2 σpM2qiδ3px⃗´ y⃗q. (516)
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Now we can remove the δ3px⃗ ´ y⃗q by a volume integral
ş

d3x that we apply to both sides. We
arrive at the spectral sum rule

1 “ Z `

ż 8

M2
t

dM2 σpM2q, (517)

i.e., Z ă 1 and Z “ 1 only if the multi-particle contribution vanishes, which it only does in the
free theory. 1 ´ Z accounts for the overlap of ϕpxq |0y with multiparticle states.

As we will see in the next section, time-ordered correlators are of particular interest to us and thus
we write:

x0|Tϕpxqϕpyq|0y “ ZDF px´ y,m2q `

ż 8

M2
t

dM2 σpM2qDF px´ y,M2q (518)

with the Feynman-propagator

DF px´ y,m2
0q “ x0|Tϕ0pxqϕ0pyq|0y . (519)

8.4 S-matrix and asymptotic in/out states

We now consider the scattering of incoming states |iy to outgoing states |fy and want to calculate
the transition amplitude. This is formulated in the theory of asymptotic in- and out-states:
In-states are created from the asymptotic vacuum |vac, iny, by acting with ϕin as t Ñ ´8. We
will see that |vac, iny is the vacuum of the interacting theory, not the free theory, even if the
particles in the initial state are well-separated from each other and the interaction is local. Simi-
larly, out-states are created from the asymptotic vacuum |vac, outy by acting with ϕout as t Ñ `8.

What are ϕin and ϕout?
Because the explicit interaction term can be neglected (because all particles are well-separated),
but the vacuum is not the vacuum of the free theory, it holds that the mass of the in- an out-fields
is not the mass m0 (the mass of the free theory), but it is m, the mass of the interacting theory.
Thus, ϕinpxq is a free field, obeying the Klein-Gordon-equation with m ‰ m0 and can thus be
expanded as

ϕinpxq “

ż

d3p

p2πq3
1

2ωp⃗

´

ap⃗,ine
´ipx ` a:

p⃗,ine
ipx

¯

, (520)

where p0 “
a

p⃗ 2 `m2. Similarly, we can expand ϕout in term of ap⃗,out and a:

p⃗,out.

This allows us to formalize the description of a scattering process, during which

• In the asymptotic past, for t Ñ ´8, the in-state contains well-separated single particles,
which propagate freely as individual states, because the interaction is local. The proper
description of these particles is of course not as momentum-eigenstates, but as wavepackets,
so that we can indeed ensure that they do not interact and are well-separated.

• At intermediate times, the particles approach each other and the interaction term in the
Lagrangian becomes important to describe what happens; the particles scatter.

• For t Ñ `8, the particles are again well-separated and free (but they may be different
particles than in the initial state, e.g., in Quantum Electrodynamics, one can have e`e´ Ñ

µ`µ´, i.e., an electron and a positron scatter into a muon and anti-muon.)
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What is the relation of ϕin and ϕout to the interacting field?
Asymptotically, it must hold that

xα|ϕ |βy Ñ C xα|ϕin |βy , (521)

i.e., at t Ñ ´8, the matrix elements of the interacting field must agree with those of the in-field
(and similarly for t Ñ 8 and ϕout). We recall that |x0|ϕp0q |py|

2
“ Z, and state without proof

that
x0|ϕp0q |py “ C x0|ϕinp0q |py

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“1 by definition

of ϕin

“ñ C “
?
Z. (522)

We caution that xα|ϕ |βy Ñ
?
Z xα|ϕin |βy for t Ñ ´8 is not to be taken to mean that one can

simply replace ϕ by
?
Zϕin everywhere; in particular, products of ϕpxq cannot simply be replaced

by products of ϕin. In summary, ϕin/out are free fields whose single-particle states have mass m.

The Hilbert spaces of asymptotic in and out states are isomorphic to each other, which means that

|i, iny “ S |i, outy (523)

for all states in the in- and out Fock spaces. This S is the S-matrix. It holds that S is unitary.

Mini-Exercise 25. Using 1 “ xi, in|i, iny and xi, out|i, outy “ 1, show that S: “ S´1.

Solution.
1 “ xi, in|i, iny “ xi, out|S:S |i, outy and xi, out|i, outy “ 1. (524)

The only way to satisfy xi, out|S:S |i, outy “ 1 and xi, out|i, outy “ 1 is by requiring

S:S “ 1, i.e., S: “ S´1. (525)

This means that S is a unitary matrix.

In other words, unitarity of the S-matrix means that we have a well-defined probability interpre-
tation in both in- and out Fock spaces.

Our goal is to compute the transition amplitude

xf, out|i, iny “ xf, in|S |i, iny
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S-matrix element

(526)

because |xf, out|i, iny|
2 gives us the probability for scattering from the final to the initial state.

Now we re-express xf, in|S |i, iny in terms of time-ordered correlators through the LSZ reduction
formula.

8.5 Derivation of the LSZ reduction formula

(Useful literature: QFT lecture notes by Timo Weigand; chapter 5 in Srednicki, chapter 6 in
Schwartz)

112



8.5.1 Introduction to LSZ:

The LSZ reduction formula allows us to relate the object that we would like to calculate, namely
the S-matrix element, to objects that we will learn how to calculate through Feynman diagrams,
namely time-ordered correlation functions. In the chapter on path integrals, we also saw that we
can calculate time-ordered correlation functions from the path integral, and Eq. (243) generalizes
directly to the interacting case.
To see where we are headed, we state our final result first, and then explain, how to get there:
Lehmann-Symanzik-Zimmermann reduction formula:

xp1, . . . , pn, out|q1, . . . , qr, iny “ xp1, . . . , pn, in|S |q1, . . . , qr, iny (527)

“
ÿ

pdisconnected termsq ` piZ´ 1
2 qn`r

ż

d4y1 . . . d
4yn

ż

d4x1 . . . d
4xr e

ip
řn

k“1ppkykq´
řr

l“1pqlxlqq

¨ ply1 `m2q . . . plx1 `m2q . . . x0|T pϕpy1q . . . ϕpynqϕpx1q . . . ϕpxrqq |0y . (528)

This expression tells us that the S-matrix element contains disconnected terms, which do not en-
code scattering events, but describe situations where a particle simply propagates through from
the initial to the final state without taking part in the scattering process. These terms are uninter-
esting for us. What we are interested in is the additional term on the right-hand side. We note one
interesting thing about the right-hand side: For fields that satisfy the free Klein-Gordon equation,
pl `m2qϕpxq “ 0, the right-hand side would vanish. This happens for the free theory and tells us
– not unexpectedly – that there is no particle scattering in the free theory. All physics of particle
scattering is encoded in the deviation of ϕ from solutions to the free Klein-Gordon equation. Note
also that this connects to what we used in discussing the propagator: A field that satisfies the
free Klein-Gordon equation can be written in terms of the free creation and annihilation opera-
tors, and then ϕpxq|0y generates a one-particle state. The deviation of ϕpxq from a solution of
the Klein-Gordon equation, which results in ϕpxq|0y having multi-particle contributions, is exactly
what makes the S-matrix element non-zero.
We also note that in Fourier-space, l `m2 Ñ ´p2 `m2, which goes to zero when a particle goes
on shell, i.e., for the asymptotic states. Thus, for the S-matrix to be non-trivial, it must hold
that the time-ordered correlator has poles whenever a particle goes on-shell. (We already saw the
delta-peak for the two-point correlator for the one-particle one-shell condition p2 “ m2.)
In general, it is the case that the correlation functions contain more information about the theory
than just the S-matrix. By multipliying the correlation function with l`m2 for each of the fields,
i.e., with a term that vanishes, we are just picking out the poles out of the correlators, which is
the only piece of information we need to describe scattering.

8.5.2 Derivation of the LSZ reduction formula

Now let us derive the above expression. We start from the S-matrix elements

xp1, . . . , pn, out|q1, . . . , qr, iny , (529)
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which are the “building blocks” if we want to describe the scattering of asymptotically localized
particles that we describe through localized wave-packets |f, iny “

ş

d3p fpp⃗q |piny.
To rewrite the S-matrix element in terms of time-ordered correlators, we write

|qi, iny “ a:

q⃗,in |0y , (530)

and next rewrite a:

q⃗,in in terms of ϕin through:

a:

q⃗,in “ ´i

ż

d3x e´iqx
Ø

B0ϕinpxq, with A
Ø

B0B “ AB0B ´ pB0AqB (531)

“ ´i

ż

d3x e´iqx
Ø

B0

ż

d3k

p2πq3
1

2ωk⃗

´

ak⃗,ine
´ikx ` a:

k⃗,in
e`ikx

¯

(532)

“ ´i

ż

d3x e´iqx

ż

d3k

p2πq3
1

2ωk⃗

´

ak⃗,ine
´ikxpiq0 ´ ik0q ` a:

k⃗,in
eikxpiq0 ` ik0q

¯

(533)

“ ´i

ż

d3k

p2πq3
1

2ωk⃗

´

ak⃗,inpiq0 ´ ik0qe´ipq0´k0qx0
¨ δ3pk⃗ ` q⃗q ` a:

k⃗,in
e´ipq0`k0qx0

piq0 ` ik0q ¨ δ3pk⃗ ´ q⃗q

¯

(534)

“ ´i
1

2ωq⃗
p2iωq⃗q a:

q⃗,in ` 0 “ a:

q⃗,in. (535)

In the second-to-last step, we used that ωq⃗ “
a

q⃗2 `m2 “
a

p´q⃗q2 `m2. Using this, we can
“trade” |qiy for ϕinpxq as follows:

xp1, . . . , pn, out|q1, . . . , qr, iny “ xp1, . . . , pn, out| a:

q⃗1,in |q2, . . . , qr, iny (536)

“
1
i

ż

d3x e´iq1x
Ø

B0 xp1, . . . , pn, out|ϕinpt, x⃗q |q2, . . . , qr, iny

ˇ

ˇ

ˇ

ˇ

x0“t

.

Now we take t Ñ ´8, because then we can use the relation (cf. Eq. (522) and the discussion that
matrix elements of the field are equal (up to a factor of

?
Z) to matrix elements of the in-field in

the limit t Ñ ´8)
lim
tÑ´8

xp⃗|ϕinpt, x⃗q |0y “ lim
tÑ´8

Z´ 1
2 xp⃗|ϕpt, x⃗q |0y (537)

and thus

xp1, . . . , pn, out|q1, . . . , qr, iny “ lim
tÑ´8

Z´ 1
2

1
i

ż

d3x e´iq1x
Ø

B0 xp1, . . . , pn, out|ϕpxq |q2, . . . , qr, iny .

(538)
ϕpxq can next act on the out-state to annihilate one of the particles in there. To do so, we need to
relate the expression for limtÑ´8 to a similar expression for limtÑ`8, and we do so by using that

ˆ

lim
tÑ`8

´ lim
tÑ´8

˙
ż

d3x fpt, x⃗q “ lim
tf Ñ`8

tiÑ´8

ż tf

ti

dt Bt

ż

d3x fpt, x⃗q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ş

d4x B0fpt,x⃗q

(539)

for any function fpt, x⃗q.
Applied to our case, this means:

xp1, . . . , pn, out|q1, . . . , qr, iny “ 1 ´ 2 (540)
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and

1 “ lim
tÑ8

p´iZ´ 1
2 q

ż

d3x e´iq1x
Ø

B0 xp1, . . . , pn, out|ϕpxq |q2, . . . , qr, iny
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

for tÑ`8, this matrix element becomes
xp1,...,pn,out|ϕoutpxq|q2,...,qr,iny

(541)

“ xp1, . . . , pn, out| a:
outpq⃗1q |q2, . . . , qr, iny (542)

“

n
ÿ

k“1
p2πq3Epk

δ3pp⃗k ´ q⃗1q xp1, . . . ,��pk, . . . , pn, out|q2, . . . qr, iny , (543)

the crossed-out pk in the last line meaning that pk has to be removed here. This describes a
process, in which one particles does not participate in the scattering event, and thus its in- and
outgoing state is identical. While the overall transition amplitude may have such contributions
(but note that it is a prerequisite that pk “ q1 for some k - if we can describe a transition in which
all pk are different from all qi, there is no such contribution because of the delta-function that is
there for momentum conservation), they are not interesting to us, because nothing happens to the
particle in question.
In terms of Feynman diagrams, this will result in a disconnected part, cf. Fig. 11.

pk q1

Figure 11: We sketch how one particle just propagates through, whereas the others may participate
in an interaction. The interaction region is indicated by the black blob, because we do not yet
know how to draw the Feynman diagrams that represent the connected part.

Now let us turn to the contribution 2 , which describes an actual, non-trivial scattering event.

2 “

ż

d4x Z´ 1
2 B0

´

e´iq1xp´iq
Ø

B0 xp1, . . . , pn, out|ϕpxq |q2, . . . , qr, iny

¯

(544)

“

ż

d4x Z´ 1
2 p´iq

´

p´B2
0e

´iq1xq xp1, . . . , pn, out|ϕpxq |q2, . . . , qr, iny (545)

` e´iq1xB2
0 xp1, . . . , pn, out|ϕpxq |q2, . . . , qr, iny

¯

,

because the cross-terms cancel each other. Now we can use ´B2
0e

´iq1x “ ´pipq0
1q2qe´iq1x “

pq0
1q2e´iq1x. This can be rewritten using that q2

1 “ m2 and thus pq0
1q2 “ m2 ` pq⃗1q2 and thus

´B2
0e

´iq1x “
`

m2 ` pq⃗1q2˘e´iq1x “

´

m2 ´ p∇⃗q2
¯

e´iq1x, (546)

where the minus in front of p∇⃗q2 compensates the i2. Thus,

2 “

ż

d4x Z´ 1
2 p´iq

ˆ

`

pm2 ´ ∇⃗2qe´iq1x
˘

xp1, . . . , pn, out|ϕpxq |q2, . . . , qr, iny (547)

` e´iq1xB2
0 xp1, . . . , pn, out|ϕpxq |q2, . . . , qr, iny

˙
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upon partial integration of ∇⃗2, and using that boundary terms at spatial infinity vanish

2 “ p´iqZ´ 1
2

ż

d4x1 e
´iq1x1

`

pm2 ` l1q xp1, . . . , pn, out|ϕpx1q |q2, . . . , qr, iny
˘

, (548)

with l “ B2
0 ´ ∇⃗2. As a net result, we have replaced q1 in |q1, . . . , qr, iny by ϕpxq. We now would

like to do the same thing with all other particles in the in- and out states, so that we can rewrite
the S-matrix element into a correlator x0|ϕpy1q . . . ϕpynqϕpx1q . . . ϕpxrq |0y. To do so, we repeat
all steps above for each of the incoming/outgoing particles. There is one point that we need to
pay attention to, namely the time-ordering of the field operators. In the exercises, you will check
that if one does the derivation properly, one ends up with T pϕpy1qϕpx1qq, with the time-ordering
operator T .

One can repeat this process for all in- and outgoing particles and obtain the
Lehmann-Symanzik-Zimmermann reduction formula

xp1, . . . , pn, out|q1, . . . , qr, iny “ xp1, . . . , pn, in|S |q1, . . . , qr, iny (549)

“
ÿ

pdisconnected termsq ` piZ´ 1
2 qn`r

ż

d4y1 . . . d
4yn

ż

d4x1 . . . d
4xr e

´ip
řn

k“1p´pkykq`
řr

l“1pqlxlqq

¨ ply1 `m2q . . . plx1 `m2q . . . x0|T pϕpy1q . . . ϕpynqϕpx1q . . . ϕpxrqq |0y . (550)

This expression relates the computation of the S-matrix elements to the computation of time-
ordered correlators.

It will be more useful to consider this expression in terms of Fourier transformed quantities.

Mini-Exercise 26. 1) How does
ply `m2qϕpyq

look like in terms of the Fourier transformed field ϕ̃ppq?

2) How does the connected part of the S-matrix element xp1, . . . , pn|S |q1, . . . , qry
ˇ

ˇ

connected
look like in terms of x0|T ϕ̃pp1q . . . ϕ̃ppnqϕ̃pq1q . . . ϕ̃pqrqq |0y?

Solution.
ply `m2qϕpyq “

ż

d4p

p2πq4 p´p2 `m2qe´ipyϕ̃ppq. (551)

Thus

xp1, . . . , pn|S |q1, . . . , qry

ˇ

ˇ

ˇ

ˇ

connected

“ piZ´ 1
2 qn`r

n
ź

k“1
p´p2

k `m2q

r
ź

l“1
p´q2

l `m2q ¨ x0|T ϕ̃pp1q . . . ϕ̃ppnqϕ̃pq1q . . . ϕ̃pqrqq |0y . (552)

Note: For all p’s and q’s it holds that they are on-shell, i.e., p2
1 “ m2 etc.

At a first glance, it therefore looks as if the right-hand-side vanishes and the S-matrix only receives
contributions from disconnected parts, i.e., no actual scattering is taking place. Surely this cannot
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be correct and of course our conclusion was too hasty: it must be the case that the correlation
functions have poles when any of the momenta go on-shell, i.e., the pole-structure of the correlator
must be

śn
k“1p´p2

k `m2q´1 śr
l“1p´p2

l `m2q´1.

We will indeed find that:

Correlators have exactly the required pole structure to make S-matrix elements non-
zero, but finite,

i.e., there are poles whenever one of the momenta goes on-shell, but they are all simple poles, so
that they cancel the factors p´p2 `m2q etc. in front.

Overall, we can write

˜

n
ź

k“1

i
?
Z

p2
k ´m2

¸˜

r
ź

l“1

i
?
Z

p2
l ´m2

¸

xp1, . . . , pn|S |q1, . . . , qry

ˇ

ˇ

ˇ

ˇ

connected

“

n
ź

k“1

ż

d4yk e
´ipkyk

r
ź

l“1

ż

d4xl e
´iqlxl x0|T pϕpy1q . . . ϕpynqϕpx1q . . . ϕpxrqq |0y .

(553)

Now we have a concrete prescription for how to calculate S-matrix elements:

• compute the Fourier-transform of the corresponding time-ordered correlation function and
take all momenta on-shell

• the result has a contribution with pole-structure
ś

i
1

p2
i

´m2 , where pi is the collection of all
momenta (ingoing and outgoing)

• the S-matrix element times pi
?
Zq#particles is the residue with respect to the pole, i.e.,

Ñ we need to calculate time-ordered correlation functions.

8.6 Calculating time-ordered correlation functions

Correlation functions can be computed in any picture and give the same result. We use this to
pick the picture in which the calculation is simplest. This is given if the vacuum state is that of the
free theory and the creation/annihilation operators are those of the free theory. We can achieve
this in the interaction picture, as we will now see. We will derive:

x0|Tϕpx1q . . . ϕpxnq |0y “
x0free|TϕIpx1q . . . ϕIpxnq e´i

ş

8

´8
dτ HintpϕI

pτ,x⃗qq
|0freey

x0free| e´i
ş

8

´8
dτ HintpϕI pτ,x⃗qq

|0freey
. (554)

Here, we use |0freey to denote the vacuum of the free theory. (Many books use the notation that
|0y “ |Ωy denotes the vacuum in the interacting theory and |0freey “ |0y denotes the vacuum in
the free theory.)

We derive this for the two-point correlator; the derivation generalizes:

x0|Tϕpx1qϕpxq |0y “
choose
t1

ąt

x0|ϕpt1, x⃗1qϕpt, x⃗q |0y (555)
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where we choose t1 ą t without loss of generality. This expression is still entirely in the Heisenberg
picture and we now transition to the interacting picture:

x0|ϕpt1, x⃗1qϕpt, x⃗q |0y “ x0| eiHt
1

ϕp0, x⃗1qe´iHpt1
´tqϕp0, x⃗qe´iHt |0y (556)

Here, we have made the transition from the Heisenberg picture to the Schrödinger picture and we
now insert 1 “ e´iH0t

1

eiH0t
1 :

“ x0| eiHt
1

e´iH0t
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Up0,t1q

eiH0t
1

ϕp0, x⃗1qe´iH0t
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ϕI pt1,x⃗1q

e`iH0t
1

e´iHpt1
´tqe´iH0t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Upt1,tq

eiH0tϕp0, x⃗qe´iH0t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ϕI pt,x⃗q

eiH0te´iHt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Upt,0q

|0y .

(557)
Thus,

“ñ x0|ϕpt1, x⃗1qϕpt, x⃗q |0y “ x0|Up0, t1qϕIpt1, x⃗1qUpt1, tqϕIpt, x⃗qUpt, 0q |0y . (558)

Now we have achieved one aspect already, namely that the fields are interaction-picture fields, such
that they time-evolve with the free Hamiltonian and satisfy the free Klein-Gordon equation and
accordingly have an expansion in terms of free creation and annihilation operators.

To relate the interacting vacuum to the free vacuum, we replace the full Hamiltonian

H “ H0 `Hint Ñ H0 ` fptqHint, with fptq Ñ 0 for t Ñ ˘8, (559)

with fptq smooth. This amounts to adiabatically switching off the interactions. We also use that
we can write

Up0, t1q “ Up0,8qUp8, t1q (560)

and therefore have that the vacuum now adiabatically evolves into the free vacuum in the limit
t Ñ ˘8, which we will denote as |0freey, and the ap⃗ that show up in the mode expansion of ϕI

actually annihilate |0freey.
Thus we can write

Upt,´8qUp´8, 0q |0y “ Upt,´8q |0freeyx0free|Up´8, 0q |0y , (561)

where we have inserted a complete set of states and used that the vacuum in the interacting theory
evolves into the free vacuum in our setup, so that no other state contributes here. When we con-
sidered the path-integral derivation of correlators, we used an alternative trick, namely, instead of
inserting the auxiliary function fptq into the Hamiltonian, we took the limit t Ñ ˘8p1 ´ iεq and
thereby removed the overlap with states that are not the vacuum. We could have done the same
thing here, and many books do. We are simply learning an alternative to the first way of deriving
the result.

Therefore,

x0|Tϕpt1, x⃗1qϕpt, x⃗q |0y “
x0free|Up8, t1qϕIpt1, x⃗1qUpt1, tqϕIpt, x⃗qUpt,´8q |0freey

´

x0|Up0,8q |0freey x0free|Up´8, 0q |0y

¯´1 . (562)
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We have written the denominator in a curious way, but the reason is that

x0|Up0,8q |0freey
´1

“ x0free|Up8, 0q |0y , (563)

i.e.,
x0|Up0,8q |0freey ¨ x0free|Up8, 0q |0y “ 1 (564)

and
´

x0|Up0,8q |0freey x0free|Up´8, 0q |0y

¯´1
“ x0free|Up8, 0q |0y ¨ x0|Up0,´8q |0freey (565)

“ x0free|Up8,´8q |0freey . (566)

Thus,

x0|Tϕpt1, x⃗1qϕpt, x⃗q |0y “
x0free|Up8, t1qϕIpt1, x⃗1qUpt1, tqϕIpt, x⃗qUpt,´8q |0freey

x0free|Up8,´8q |0freey
. (567)

(Note on the side: this normalization is why we did not care about normalization factors in the
path integral - they drop out.)

Now we use Upt1, tq “ e´i
şt1

t
dτ HI

intpτq, which we derived earlier, and write

x0|T
`

ϕpt1, x⃗1qϕpx, x⃗q |0y
˘

“ (568)

x0free|T exp
ˆ

´i

ż 8

t1

dτ HI
int

˙

ϕIpt1q exp
˜

´i

ż t1

t

dτ HI
int

¸

ϕIptq exp
ˆ

´i

ż t

´8

dτ HI
int

˙

|0freey .

Under the time-ordering symbol, we can combine all three exponentials into one, because the T
arranges all operators into chronological order anyways.
We then obtain a result that we directly write for n ě 2:

x0|Tϕpx1q . . . ϕpxnq |0y “
x0free|TϕIpx1q . . . ϕIpxnq e´i

ş

8

´8
dτ HintpϕI

pτ,x⃗qq |0freey

x0free|Te´i
ş

8

´8
dτ HI

int |0freey
. (569)

Note: We have re-expressed the time-ordered correlator that we need for the calculation of S-
matrix elements through a correlator in the free vacuum and, because we work in the interaction
picture, we have fields which can be expanded in terms if free creation and annihilation operators.

8.7 Feynman propagator

In the following, we will encounter a particular correlation function, namely the Feynman propa-
gator. We consider it for free fields in the free theory. It is closely related to the propagator that
we considered in chapter 3, except that it comes with a time-ordering and is defined as

DF px´ yq “ x0|T pϕpxqϕpyqq|0y. (570)

We already encountered it when we considered the Källen-Lehmann spectral representation.
Now, it will be useful to provide a representation for it as an integral over the four-momentum,
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namely,

DF px´ yq “ lim
εÑ0

ż

d4p

p2πq4
i

p2 ´m2 ` iε
e´ippx´yq. (571)

The iε is introduced so that we can consider the p0 integration in the complex p0 plane and perform
it using Cauchy’s integral theorem. It is there to implement the time-ordering prescription.
To show that this integral representation is correct, we will consider that for x0 ą y0, DF px´yq “

Dpx ´ yq, i.e., the Feynman propagator for this case reduces to the propagator with the same
ordering of the times. For Dpx´ yq, we previously had an integral expression, namely

Dpx´ yq “

ż

d3p

p2πq3
1

2ωp⃗
e´ippx´yq. (572)

To check that DF px ´ yq as given in Eq. (571) reduces to Eq. (572) (with a given ordering of
the times), we check the two cases x0 ą y0 and x0 ă y0 separately. For x0 ą y0, we have that
´ip0px0 ´ y0q Ñ ´8 for p0 Ñ ´i8. Therefore we close the integration contour in the lower half
plane as in Fig. 12.

Re p0

Im p0

p0
2

p0
1

Figure 12: Contour for the integral representation of the Feynman propagator for the case x0 ą y0.

p0
1 and p0

2 indicates the position of the two poles, and we have that

p2 ´m2 ` iε “ pp0 ´ p0
1qpp0 ´ p0

2q, (573)

with p0
1{2 “ ˘

a

p⃗ 2 `m2 ´ iε. When we rewrite the integral along the contour with imaginary
p0-part, we pick up the residue at the pole:

lim
p0Ñp0

1

pp0 ´ p0
1q ¨

i

pp0 ´ p0
1qpp0 ´ p0

2q
e´ippx´yq “

i

p0
1 ´ p0

2
e´ippx´yq

ˇ

ˇ

ˇ

ˇ

p0“p0
1

(574)

“
i

2
a

p⃗ 2 `m2 ´ iε
e´ippx´yq

ˇ

ˇ

ˇ

ˇ

p0“p0
1

. (575)
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For x0 ă y0 we proceed analogously, with a contour in the upper half plane, which reduces to the
expression for Dpx´ yq with the corresponding ordering.
Now we are ready to use the Feynman propagator and see how to rewrite the correlation functions,
that appeared in the LSZ formalism for the S-matrix, in terms of Feynman diagrams.

8.8 Wick-theorem and Feynman rules

To compute expressions like x0free|TϕIpx1q . . . ϕIpxnqe`i
ş

d4x LintpϕI
q |0freey (where we used that

´
ş8

´8
dτ HintpϕIq “

ş

d4x LintpϕIq), we will

• use perturbation theory, i.e., expand the exponential in powers of λ

• relate the time-ordering to normal ordering.

Normal ordering of an operator is defined as writing all the creation operators that appear in
an operator to the left and all annihilation operators operators to the right. We denote normal
ordering by :O :. For instance, if

O “ ap⃗1a
:

p⃗2
ap⃗3 “ñ :O :“ a:

p⃗2
ap⃗1ap⃗3 . (576)

The advantage of normal ordering ϕIpx1q . . . ϕIpxnq is that the expectation value of normal ordered
operators vanishes:

x0|:O :|0y “ 0. (577)

(We use that ϕI evolves with the free Hamiltonian and can thus be decomposed into free modes
with free creation/annihilation operators.)
Thus, the only contribution to the expectation value that we are interested in will come from the
terms that arise due to the rearranging of the time-ordered into a normal-ordered expression.

We start with
x0|Tϕpxqϕpyq|0y , (578)

where from now on we drop the I on the field and the subscript on the vacuum, we will even use
xTϕpxqϕpyqy to denote the correlators that we are interested in.
We introduce the shorthand

ϕ`pxq “

ż

d3p

p2πq3
1

2ωp⃗
ap⃗ e

´ipx (579)

and
ϕ´pxq “

ż

d3p

p2πq3
1

2ωp⃗
a:

p⃗ e
ipx, (580)

such that ϕpxq “ ϕ` ` ϕ´ and also ϕ` |0y “ 0 “ x0|ϕ´.

Tϕpxqϕpyq “

$

&

%

ϕpxqϕpyq, for x0 ě y0

ϕpyqϕpxq, for x0 ă y0.
(581)

We consider the first possibility first:

ϕpxqϕpyq “ ϕ`pxqϕ`pyq ` ϕ`pxqϕ´pyq ` ϕ´pxqϕ`pyq ` ϕ´pxqϕ´pyq. (582)
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The first, second and last expression are already normal-ordered, but the third one is not, so we
have to use the commutator, and

ϕpxqϕpyq “:ϕpxqϕpyq : `
“

ϕ`pxq, ϕ´pyq
‰

. (583)

We can work out something similar for ϕpyqϕpxq and obtain

Tϕpxqϕpyq “:ϕpxqϕpyq : `Θpx0 ´ y0q
“

ϕ`pxq, ϕ´pyq
‰

` Θpy0 ´ x0q
“

ϕ`pyq, ϕ´pxq
‰

. (584)

The difference between time-ordered and normal ordered product is a c-number (times the identity
operator), because the result of the commutator term is a number. We note that

x0|Tϕpxqϕpyq |0y “ x0| :ϕpxqϕpyq : |0y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

“0

`c, (585)

where c is the expectation value of the 2nd and 3rd term on the right hand side of the previous
expression. Therefore, we have found that the c-number is actually the Feynman propagator,
because the definition of the Feynman propagator is exactly that it is x0|Tϕpxqϕpyq |0y:

c “ DF px´ y,m2
0q. (586)

We thus define a contraction
ϕpxqϕpyq “ DF px´ y,m2

0q. (587)

At this stage, this looks like a somewhat trivial rewriting, but the point is that for time-ordered
products of operators, it holds that they can be rewritten into normal-ordered products plus
contractions even at the level of the actual operators, and therefore also in expectation values.
This is the statement of Wick’s theorem:

Tϕpx1q . . . ϕpxnq “:ϕpx1q . . . ϕpxnq : ` all contractions of :ϕpx1q . . . ϕpxnq : . (588)

Here, all contractions signify that we sum over all cases with one or more pairs of fields contracted.
Note that this holds as an operator identity (which implies that it also holds in expectation values).
For example

T pϕpx1qϕpx2qϕpx3qϕpx4qq “:ϕpx1qϕpx2qϕpx3qϕpx4q : ` :ϕpx1qϕpx2qϕpx3qϕpx4q :

` :ϕpx1qϕpx2qϕpx3qϕpx4q : ` other cases with one contracted pair

` :ϕpx1qϕpx2qϕpx3qϕpx4q : ` :ϕpx1qϕpx2qϕpx3qϕpx4q :

` :ϕpx1qϕpx2qϕpx3qϕpx4q : . (589)

In an expectation value, only the fully contracted terms will remain. These can be identified with
pairs of Feynman propagators, such that

x0|T pϕpx1qϕpx2qϕpx3qϕpx4qq |0y “ DF px1 ´ x2,m0qDF px3 ´ x4,m0q

`DF px1 ´ x3,m0qDF px2 ´ x4,m0q

`DF px1 ´ x4,m0qDF px2 ´ x3,m0q. (590)
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The proof of Wick’s theorem proceeds by induction and will be completed in the exercises.

8.9 Feynman rules

Feynman rules associate elements of a Feynman diagram with terms in a calculation. They consti-
tute a pictorial shorthand for the calculation of time-ordered correlators and S-matrix elements.

We represent
DF px´ yq “

x y

p´iλq

ż

d4x “

(591)

and can thus write
A

Tϕpx1q . . . ϕpxnqei
ş

d4x Lint
E

“ ϕpx1qϕpx2qϕpx3qϕpx4q ` ϕpx1qϕpx2qϕpx3qϕpx4q ` ϕpx1qϕpx2qϕpx3qϕpx4q

`
p´iλq

4!

ż

d4x ϕpx1qϕpxqϕpx2qϕpxqϕpx3qϕpxqϕpx4qϕpxq

` (mini-exercise) ` terms which are not fully contracted ` Opλ2q. (592)

In terms of Feynman diagrams this corresponds to
A

Tϕpx1q . . . ϕpxnqei
ş

d4x Lint
E

“

x1

x2

x3

x4

`

x1

x2

x3

x4

`

x1

x2

x3

x4

`
p´iλq

4!

ż

d4x

x1

x2

x3

x4

` (mini-exercise) ` terms which are not fully contracted ` Opλ2q.

(593)
Note the difference between and .

Mini-Exercise 27. What are the additional, fully-contracted expressions „ iλ in the previous
expression? Draw the corresponding Feynman diagrams and write the contractions.

Solution.

p´iλq

4!

ż

d4x

ˆ

ϕpx1qϕpx2qϕpxqϕpxqϕpx3qϕpxqϕpx4qϕpxq`

` ϕpx1qϕpxqϕpx2qϕpxqϕpx3qϕpx4qϕpxqϕpxq ` ϕpx1qϕpxqϕpxqϕpx4qϕpxqϕpxqϕpx2qϕpx2q

` ϕpxqϕpxqϕpxqϕpxq ¨

ˆ

ϕpx1qϕpx2qϕpx3qϕpx4q ` ϕpx1qϕpx2qϕpx3qϕpx4q ` ϕpx1qϕpx2qϕpx3qϕpx4q

¯

˙

.

This corresponds to
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p´iλq

4!

ż

d4x

˜

x1

x2

x3

x4

`

x1

x2

x3

x4

`

x1

x2

x3

x4

` ¨

˜

x1

x2

x3

x4

`

x1

x2

x3

x4

`

x1

x2

x3

x4

¸¸

.

We get the first non-trivial loop contribution to 2-2-scattering at Opλ2q, where we have, among
others

Note: the diagrams come with non-trivial numerical prefactors that we have not determined in the
above.

8.10 Feynman rules in momentum space

Typically, we calculate scattering amplitudes in momentum space, because there they correspond
to poles of the correlator. Thus, we write Feynman rules in momentum space:
We use the notation

Gpx1, . . . , xnq “ xT pϕpx1q . . . ϕpxnqy (594)

for the correlators. This is motivated from the fact that the 2-pt function Gpx, yq is a Green’s
function of the Klein-Gordon-operator.
In defining the Fourier transform G̃pp1, . . . , pnq. we choose e´ipx for incoming particles and eipx

for outgoing particles, as is consistent with our discussion for LSZ, so that

G̃pp1, . . . , pnq “

ż

d4x1 e
´ip1x1 . . .

ż

d4xn e
ipnxn Gpx1, . . . , xnq. (595)

Now we start with the real-space Feynman rules:

x y
“ DF px´ yq “

ż

d4p

p2πq4
i

p2 ´m2
0 ` iε

e´ippx´yq

“ p´iλq

ż

d4x

(596)

and we need to figure out how to write the corresponding rules in momentum space.
First, we observe that on each external line, the momentum is fixed to the momentum introduced
by the Fourier transform, i.e., to an external line starting at some position xi, the Fourier transform
will associate a momentum pi.
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Let’s look at a single external line of some diagram to see how this happens:

x1

G̃pp1, . . .q “

ż

d4x1 e
´ip1x1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
from Fourier-

transforming Gpx1,...q

ż

d4q

p2πq4
i

q2 ´m2
0 ` iε

e´iqpx1´y1q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
from the propagator on this line,

where we assume that the “interior”
point at which the line terminates, is y1.

(597)

“ñ

ż

d4x1 e
´ip1x1e´iqx1 “ δ4pp1 ` qq (598)

“ñ
i

p2
1 ´m2

0 ` iε
e´ip1y1 is associated to that line. (599)

What happens to the momenta of the different lines that meet at a vertex?

p1

p2

p3

p4
„ ´iλ

ż

d4x e´ip1xe´ip2xe`ip3xe`ip4x

ˆ

from the e´ipy1 in
the example above

˙

„ ´iλp2πq4 δ4pp1 ` p2 ´ p3 ´ p4q

(600)

Ñ this enforces 4-momentum conservation at each vertex. (It is a good cross check of the formalism
that a feature such as momentum conservation, which we would expect, shows up explicitly.)
Note that, because each line ends either at an external point or at a vertex, all factors of e˘ipx are
removed. Note also that none of the momenta related to external lines are integrated over, and
also, some internal lines have a fixed momentum. However, there are some internal momenta, for
which a momentum integration remains and this is referred to as “loop momentum integration”,
because these internal lines always form some form of loop.

Now that we have seen what happens to a single ingoing line and what happens at a vertex,
let’s look at a few examples of complete diagrams. We start with the simplest one, which is the
propagator:

1)

p1 p2

“

ż

d4x1 e
´ip1x1

ż

d4x2 e
ip2x2DF px2 ´ x1q

“

ż

d4x1 e
´ip1x1

ż

d4x2e
`ip2x2

ż

d4q

p2πq4
i

q2 ´m2
0 ` iε

e´iqpx2´x1q

“

ż

d4q

p2πq4
i

q2 ´m2
0 ` iε

p2πq4δ4pp1 ´ qqp2πq4δ4pp2 ´ qq

“
i

p2
2 ´m2

0 ` iε
p2πq4δ4pp1 ´ p2q.

(601)
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2)

q

p1 p2

“

ż

d4x1 e
´ip1x1

ż

d4x2 e
ip2x2 p´iλq

ż

d4x DF px2 ´ xqDF px´ x1qDF px´ xq

“ ´iλ

ż

d4x1

ż

d4x2

ż

d4x

ż

d4q1

p2πq4

ż

d4q2

p2πq4

ż

d4q

p2πq4 e
´ip1x1eip2x2

¨
i

q2
1 ´m2

0 ` iε
e´iq1px2´xq i

q2
2 ´m2

0 ` iε
e´iq2px´x1q i

q2 ´m2
0 ` iε

e´iqpx´xq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“1

“ ´iλ

ż

d4q

p2πq4

ˆ

i

p2
1 ´m2

0 ` iε

˙2
i

q2 ´m2
0 ` iε

p2πq4δ4pp1 ´ p2q.

(602)
The “loop-momentum” q is unfixed and integrated over. We may recognize this as the same
type of momentum integration as the one that arose in our calculation of the effective potential
from the path integral. In fact, the calculation we performed there may be rephrased in terms
of Feynman diagrams.

Physically, loop corrections arise due to the non-trivial nature of the vacuum in the interacting
quantum theory. We may in fact think of the diagram as the real particle (with momentum p1),
encountering a virtual particle, which, after interacting with the real particle, annihilates again
with another virtual particle.16 Virtual particles exist with all possible values of the momentum
and thus we have to integrate over all possible momenta to account for the full effect.

3)

Mini-Exercise 28. Now calculate

p1

p2

p3

p4 (603)

16In general, it is always virtual particle-antiparticle pairs that annihilate, because charge must remain conserved.
In the case of a real scalar field, there is no distinction between particle and antiparticle, because there is no charge.
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Solution.

p1

p2

p3

p4
“

ż

d4x1 e
´ip1x1

ż

d4x2 e
´ip2x2

ż

d4x3 e
ip3x3

ż

d4x4 e
ip4x4

¨ p´iλq

ż

d4x DF px´ x1qDF px´ x2qDF px3 ´ xqDF px4 ´ xq

“
i

p2
1 ´m2

0 ` iε

i

p2
2 ´m2

0 ` iε

i

p2
3 ´m2

0 ` iε

i

p2
4 ´m2

0 ` iε

¨ p2πq4δ4pp1 ` p2 ´ p3 ´ p4qp´iλq.

4)

p1

p2

p3

p4

p5

p6

“

ż

d4x1 e
´ip1x1

ż

d4x2 e
´ip2x2

ż

d4x3 e
´ip3x3

¨ p´iλq

ż

d4x DF px´ x1qDF px´ x2qDF px´ x3qDF px´ yq

¨ p´iλq

ż

d4y DF py ´ x4qDF py ´ x5qDF py ´ x6q

¨

ż

d4x4 e
ip4x4

ż

d4x5 e
ip5x5

ż

d4x6 e
ip6x6 .

(604)

We first use the integrals
ş

d4xi associated to the external lines, which results in ie˘ipix{y

p2
i

´m2
0`iε

on
each external line, depending on whether it is in- or outgoing (and ends at x or y).

Ñ “ p´iλq2
ż

d4x

ż

d4y

ż

d4p

p2πq4
i

p2 ´m2
0 ` iε

e´ippx´yq (605)

¨ eip1xeip2xeip3xe´ip4ye´ip5ye´ip6y
6
ź

i“1

i

p2
i ´m2

0 ` iε
(606)

“ p´iλq2`p2πq4˘2
ż

d4p

p2πq4
i

p2 ´m2
0 ` iε

(607)

¨ δ4pp1 ` p2 ` p3 ´ pqδ4pp4 ` p5 ` p6 ´ pq

6
ź

i“1

i

p2
i ´m2

0 ` iε
(608)

“ p´iλq2 i

pp1 ` p2 ` p3q2 ´m2
0 ` iε

p2πq4δ4pp1 ` p2 ` p3 ´ p4 ´ p5 ´ p6q

6
ź

i“1

i

p2
i ´m2

0 ` iε

(609)

Note: despite there being an internal line, all momenta are fixed, including that of the internal
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line. This is because the internal line does not form a loop. The situation is different in our
previous example, 3).

5)

Mini-Exercise 29. Calculate

p1

p2

p3

p4

q

q ´ p1 ´ p2

(610)

In summary, the momentum-space Feynman rules for λϕ4 theory are:

1)
p

“
i

p2 ´m2
0 ` iε

(611)

2)

“ ´iλ (612)

3) assign momenta at each vertex so that momentum conservation is ensured

4) multiply by an overall factor p2πq4δ4ppf ´ piq

5) multiply by
ş

d4p
p2πq4 for each closed loop, with p the momentum that is unfixed after ensuring

momentum conservation at each vertex. p is called the “loop momentum”.

Symmetry factors: some diagrams have additional numerical prefactors. The 1
4! in the interac-

tion in the Lagrangian is chosen such that is cancels combinatorial possibilities associated with
exchanging the corresponding fields. However, there are diagrams for which non-trivial factors are
left. For example:

1

2

3

4

(613)

If we apply Wick’s theorem to ϕpx1qϕpx2qϕpx3qϕpx4qϕ4, we have 4 ¨ 3 ways of arriving at

ϕpx1qϕpx3qϕpx2qϕ
Ò

4
choices

ϕpx4qϕ
Ò

3
choices

ϕϕ. (614)

This does not fully cancel the 1
4! coming from the vertex, so the diagram has a symmetry factor

4¨3
4! “ 1

2 . Intuitively, the symmetry factor is the inverse of the number of ways which the compo-

nents of a diagram can be interchanged to still give the same diagram. For 1
2

3
4

, the two

128



lines that go out from the vertex and close in a loop can be interchanged.

Now we go back to the expression that we started from, namely

x0|Tϕpx1q . . . ϕpxnq eiSint |0y

x0|TeiSint |0y
. (615)

What is the diagrammatic representation of this expression? x0|TeiSint |0y has a Feynman diagram
expansion in terms of vacuum bubbles, i.e., diagrams without external lines:

x0|TeiSint |0y “ 1 `
1
2 ` . . . (616)

The numerator of this expression also contains the same vacuum bubbles. In fact, if we consider
the full Feynman diagram expansion of the numerator, we see that each given Feynman diagram

with n external lines appears multiplied with the same factor 1 ` 1
2 ` . . ..

“ñ The denominator of Eq. (615) removes the Feynman diagrams that are just vacuum bubbles,
such that

x0|Tϕpx1q . . . ϕpxnq|0y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

in Heisenberg picture

“
x0free|TϕIpx1q . . . ϕIpxnq eiSint |0freey

x0free|TeiSint |0freey
“ sum of all Feynman diagrams

without vacuum bubbles . (617)

To close this section, let us make a comment on the perturbative series of Feynman diagrams that
contributes to any given n-point function:

• First, in many Feynman diagrams with a loop integral, there is an ultraviolet divergence, i.e.,
the loop integration contains a divergence that comes from the high-momentum part of the
integration. This divergence can, in perturbatively renormalizable theories, be understood
and treated through perturbative renormalization.

• We see that, as we go to higher orders in the perturbative series in the coupling, the number
of Feynman diagrams that contribute, grows very quickly.

• The perturbative series in powers of the coupling is not a convergent series, but only an
asymptotic series. Thus, the result of summing the terms in the series (after renormalization)
gets closer to the full result, as we add higher-order terms in the coupling, but only up to a
finite number of terms, before the result gets worse.

Taken together, the above points mean that calculating observables in interacting QFT is math-
ematically somewhat more tricky than it is in many other frameworks in physics, where we are
neither used to intermediate divergences nor to asymptotic (rather than convergent) series. Nev-
ertheless, QFT makes very precise predictions. For instance, the anomalous magnetic moment of
the electron is calculated to twelve significant digits and found to agree with experiment.
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8.11 Z-factor and physical mass in Källen-Lehmann spectral
representation from Feynman diagrams

We recall that

x0|TϕHpxqϕHpyq|0y “ Z DF px´ y,m2q `

ż 8

M2
t

dM2 σpM2qDF px´ y,M2q. (618)

We would now like to understand how Z and m2 are determined in terms of Feynman diagrams.
There are divergences, if the computation is done explicitly, but here we will only show how the
perturbative expansion can be written as a geometric series.
In momentum space:

p p
“

iZ

p2 ´m2 ` iε
`

ż 8

M2
t

dM2 σpM2q
i

p2 ´M2 ` iε
, (619)

where p p denotes the full propagator, and is given by a sum over all momentum space
Feynman diagrams with two external lines, without vacuum bubbles and without an overall delta-
function. From here on, we drop the iε, because it only matters if we want to perform the
p0-integration and need to know how to close the contour.
We have that

“ ` ` ` ` ` . . . (620)

where the first diagram is of order Opλ0q, the second one is of order Opλq and the last three are
of order Opλ2q.

There is an important difference between the diagrams at Opλ2q:

is called “1-particle-reducible”, because it falls apart into two disconnected parts
when the internal line in the center is cut.

and are called “1-particle-irreducible”, because they do not fall
apart, when any of the internal lines is cut.

We now note that if we denote by
ˇ

ˇ

1PI the 1-particle irreducible diagrams (all of them,
to any order in λ), where we have removed the external lines (also often called “legs”), then we
can write:

“

ˇ

ˇ

ˇ

ˇ

1PI
`

ˇ

ˇ

ˇ

ˇ

ˇ

1PI

ˇ

ˇ

ˇ

ˇ

ˇ

1PI

` . . . (621)

We denote
ˇ

ˇ

1PI “ ´iπpp2q and it is called the self-energy.
It holds that

ˇ

ˇ

ˇ

ˇ

1PI
“

i

p2 ´m2
0

p´iπpp2qq
i

p2 ´m2
0

(622)
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and thus we can write, using Eq. (621)

“
i

p2 ´m2
0

`
i

p2 ´m2
0

p´iπpp2qq
i

p2 ´m2
0

`
i

p2 ´m2
0

p´iπpp2qq
i

p2 ´m2
0

p´iπpp2qq
i

p2 ´m2
0

` . . .

(623)

Here we see why it was useful to introduce the 1-particle-irreducible set of diagrams: because we
did so, we are guaranteed that the momentum that flows through each consecutive propagator that
connects the irreducible parts, is p2.
We now use the series expansion

a

1 ´ r
“ ap1 ` r ` r2 ` . . .q (624)

to write

“
i

p2 ´m2
0

˜

i

1 ´ p´iπpp2qq ¨ i
p2´m2

0

¸

“

�
�
�
�i

p2 ´m2
0

1

�
��i

p2´m2
0

1
´

i
p2´m2

0

¯´1
` iπpp2q

“
i

p2 ´m2
0 ´ πpp2q

.

(625)

We can equate this with the Källen-Lehmann spectral representation

i

p2 ´m2
0 ´ πpp2q

“
iZ

p2 ´m2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pole at
p2

“m2

`

ż 8

M2
t

dM2 σpM2q
i

p2 ´M2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
no poles at p2“m2

. (626)

“ñ the left hand side must also have a pole at p2 “ m2, i.e.,

p2 ´m2
0 ´ πpp2q

ˇ

ˇ

ˇ

ˇ

p2“m2
“ 0 (627)

and hence m2 “ m2
0 ` πpm2q.

In addition, the residues at the pole must match:

lim
p2Ñm2

pp2 ´m2q

˜

iZ

p2 ´m2 `

ż 8

M2
t

dM2 σpM2q
i

p2 ´M2

¸

“ iZ. (628)

Thus
lim

p2Ñm2
pp2 ´m2q

i

p2 ´m2
0 ´ πpp2q

!
“ iZ. (629)

To take the limit, we Taylor expand πpp2 « m2q and write

Z´1 “ lim
p2Ñm2

p2 ´m2
0 ´

`

πpm2q ` π1pp2 ´m2q
˘

p2 ´m2 (630)

“ lim
p2Ñm2

˜

p2 ´m2
0 ´ πpm2q

p2 ´m2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“1 (see above)

´π1pm2q

¸

(631)
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“ñ Z´1 “ 1 ´ π1pm2q. (632)

This is a powerful result, because we now understand quantitatively why the mass of 1-particle
eigenstate in an interacting theory differs from m0: The reason lies in the self-interaction of the
field (encoded in the Feynman diagrams), which shift the mass from m0 to m. This justifies our
treatment of asymptotic states where we used that they behave like free particles, but with a
shifted mass and a non-trivial “wave-function renormalization” Z.

Next, we are ready to come back so S-matrix elements and understand how to write the Feynman
rules for them. Then, we derive how the S-matrix is related to scattering cross-sections, such that
we understand the relation of Feynman diagrams to scattering cross-sections.

8.12 Feynman rules for scattering amplitudes

Using the notation Gpp1, . . . , pn, k1, . . . , kmq for the time-ordered correlator in Fourier space, the
LSZ relation states that

xp1, . . . , pn, out|k1, . . . , km, iny
ź

j

i
?
Z

p2
j ´m2

ź

i

i
?
Z

k2
i ´m2 „ Gpp1, . . . , pn, k1, . . . , kmq. (633)

From this, we see that the “amputated” diagrams, for which there is no propagator factor on the
external legs, form the contributions to the S-matrix element. This is, because these factors, that
are part of G, are explicitly divided out in the transition to the S-matrix element. There only
remains a factor of

?
Z for each external line. In addition, we are of course only interested in

connected diagrams.

In summary, we have the following set of Feynman rules for the S-matrix:
To compute xp1, . . . , pn|S |k1, . . . , kmy

ˇ

ˇ

connected,

• draw the connected Feynman diagrams with n`m external lines to given order in λ

• assign ingoing momenta ki and outgoing momenta pj and label momenta of internal lines
with qi

• each vertex carries p´iλqp2πq4δ4p
ř

ingoing momenta ´ outgoing momentaq. (Using momen-
tum conservation at a vertex may result in a change of some qi, e.g., qi ` pl ` kr)

• each internal line carries i
q2

i
´m2

0`iε

• integrate over all internal momenta
ś

i

ş

d4qi

p2πq4

• divide by the symmetry factor

• sum up all diagrams and multiply by p
?
Zqn`m.

Mini-Exercise 30. Example: What are the Feynman diagrams contributing to 2-2-scattering
to Opλ2q? What are the expressions for them?
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Solution.

p1

p2

k1

k2 “ p´iλqp2πq4δ4pp1 ` p2 ´ k1 ´ k2qp
?
Zq2`2 (634)

`

p1

p2

q1

q2

k1

k2

“ p´iλqp2πq4
ż

d4q1

p2πq4

ż

d4q2

p2πq4 δ
4pp1 ` p2 ´ q1 ´ q2q

¨
i

q2
1 ´m2

0 ` iε

i

q2
2 ´m2

0 ` iε

¨ p´iλqp2πq4δ4pq1 ` q2 ´ k1 ´ k2qp
?
Zq2`2

“ p´iλq2p2πq4
ż

d4q1

p2πq4
i

q2
1 ´m2

0 ` iε

¨
i

pq1 ´ k1 ´ k2q2 ´m2
0 ` iε

δ4pp1 ` p2 ´ k1 ´ k2qp
?
Zq2`2.

(635)

Now we can finally make the connection to cross-sections.

8.13 Cross-section and S-matrix elements

S-matrix elements are generically of the form

xf |S |iy “ δfi

n̄o
scattering

` ip2πq4δ4ppf ´ piq Mfi±
scattering
amplitude

. (636)

The delta-function δ4ppf ´ piq that we have pulled out in general follows by imposing momentum
conservation successively at each vertex. The term δfi is only present if i “ f , so that there is the
possibility of transition from the final to the initial state without any scattering. We exclude this
in what follows by assuming i ‰ f .

The quantum mechanical probability for scattering from an initial state |iy into a final state |fy is
given by

P|iyÑ|fy “ |xf |S |iy|
2
. (637)

If we are considering a range of final states t|fyu (for instance, later, when we consider Quantum
Electrodynamics, we may decide to not fix the polarization of the photons in the final state, then
the final state is actually a range of states labeled by the different polarizations that are viable),
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then

P|iyÑ|fy “
ÿ

|fy“t|fyu

|xf |S |iy|
2 (638)

“
ÿ

|fy“t|fyu

ˇ

ˇp2πq4δ4ppf ´ piq
ˇ

ˇ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“p2πq4δ4ppf ´piq¨p2πq

4
¨ δ4

p0q

´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“VolpR1,3q

2
|Mfi|

2
. (639)

We see that the overall probability is related to the spacetime volume VolpR1,3q, thus we define a
transition rate that is normalized per spacetime volume:

ωfi “
P|iyÑt|fyu

unit time ˆ unit spatial volume , (640)

such that
ωfi “

ÿ

fPt|fyu

p2πq4δ4ppf ´ piq |Mfi|
2
. (641)

For scattering into N identical particles, for which the individual momentum are not fixed (just
their sum is),

ř

fPt|fyu becomes a product of momentum integrals (with Lorentzian normalization)
and on-shell,

ωfi “
1
N !

N
ź

n“1

ż

d3kn
p2πq3

1
2En

p2πq4δ4

˜

ÿ

i

pi ´
ÿ

n

kn

¸

|Mfi|
2
, (642)

where the 1
N ! accounts for the indistinguishability of the N identical particles.

Next, we define the cross-section and relate it to ωfi. The scattering cross-section σ has units of
area and can be understood as the “effective are” of a target that an incoming particle interacts
with. It is not the actual area of the target, but this “effective” are - which increases, the stronger
the interaction is - that determines the probability of scattering. For instance, the cross-section
can be zero, if the interaction between target and particle is zero (e.g., when the target only inter-
acts through the electromagnet interaction, but the particles does not interact electromagnetically).

We define σ for the following setup:
We consider an incoming beam of particles of density ρB and length lB , incident upon a target of
density ρA and length lA, where ρA{B is a particles number density.
The number of scattered particles, # events, is

# events „ lAlB

ż

d2x ρApxqρBpxq, (643)

where we assumed that the number density only varies in the plane orthogonal to the direction of
the beam.
The factor of proportionality between # events and lAlB

ş

d2x ρApxqρBpxq has units of area and it
is the cross-section:

# events “ σ lAlB

ż

d2x ρApxqρBpxq. (644)
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Let’s assume that ρA “ const and ρB “ const and both beams overlap over an area A, then

σ “
# events
lAlBρAρBA

. (645)

Let’s now consider a 2-N -scattering process, for which the initial states are momentum eigenstates
|pAy and |pBy and the outgoing states are momentum eigenstates |kjy. (More carefully, to describe
a localized scattering event, we would actually work with wave-packets here.)
We work in the rest frame of the target, called the lab frame, i.e., we consider a setting in which a
target is stationary in the lab. We now want to relate σ to ωif , and so we write

# events
Volume ˆ Time “

σ lAlBρAρBA

Volume ˆ Time “
Ò

Volume“lAA

σ ρAρB ¨
ˇ

ˇv⃗ L
B

ˇ

ˇ, (646)

where Volume “ lAA is the actual interaction volume and
ˇ

ˇv⃗ L
B

ˇ

ˇ is the B-velocity in the lab frame,
ˇ

ˇv⃗ L
B

ˇ

ˇ “ lB
Time , where the factor “Time” is the time during which scattering occurs.

Because E “ γm and p⃗ “ γmv⃗,
ˇ

ˇv⃗ L
B

ˇ

ˇ “

ˇ

ˇp⃗L
B

ˇ

ˇ

EB
. (647)

Now we make the transition from # events to probabilities. Instead of considering particle number
densities, we consider the probability to find particles in a given volume. For this, our (Lorentzian)
normalization of the states (see Eq. (132)) is crucial:

xpA|pAy “ p2πq3 2EA δ3pp⃗A ´ p⃗Aq “ 2EA VR3 , (648)

where VR3 is the volume of R3, i.e. p2πq3δ3p0q “ VR3 .
We thus replace

ρA Ñ
xpA|pAy

VR3
“ 2EA and ρB Ñ 2EB . (649)

In the rest frame of A, in which we are working, we have 2EA “ 2m, such that

ωfi “
QM probability
Volume ˆ Time (650)

“ σ ρAρB
ˇ

ˇv⃗ L
B

ˇ

ˇ

ˇ

ˇ

ˇ

ˇρA“2EA“2m
ρB“2EB

(651)

“ σ 2m ¨ 2EB
ˇ

ˇv⃗ L
B

ˇ

ˇ

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
“|p⃗L

B|

. (652)

This is derived in the lab frame, but we are interested in providing a Lorentz covariant expression,
and thus we rewrite 4m

ˇ

ˇp⃗L
B

ˇ

ˇ in such a way that it is invariant under Lorentz boosts in the direction
A Ñ B, so that we can also go, e.g., to the center-of-mass frame or to B’s rest frame.
It holds that (using that v⃗ L

A “ 0)

4m
ˇ

ˇp⃗L
B

ˇ

ˇ “ 2EAEB
ˇ

ˇv⃗ L
B

ˇ

ˇ “ 4EAEB
ˇ

ˇv⃗ L
A ´ v⃗ L

B

ˇ

ˇ, (653)

which is actually invariant under boosts in A Ñ B direction. Thus,

ωfi “ 4EAEB |v⃗A ´ v⃗B |σ (654)
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is the general expression for the transition rate in any frame. (Peskin/Schröder has a more formal
proof.)

Now we use our previously derived expression for ωfi in terms of |Mfi|
2,

ωfi “
1
N !

N
ź

n“1

ż

d3kn
p2πq3

1
2En

p2πq4δ4

˜

ÿ

i

pi ´
ÿ

n

kn

¸

|Mfi|
2 (655)

for two particles in the initial state to write

dσ “
|Mfi|

4EAEB |v⃗A ´ v⃗B |
p2πq4

ź

n

d3kn
p2πq3

1
2En

δ4
´

pA ` pB ´
ÿ

n

kn

¯

, (656)

which is the differential cross section.
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9 QED processes at tree level

We now derive the Feynman rules for QED and calculate the cross-section (at tree level, i.e., where
the Feynman diagram is “tree-like”, i.e., has no loops) for some scattering processes. To do so,
we need the propagators for fermions and for photons, as well as the Feynman rules associated to
external particles and vertices.

9.1 Feynman rules for QED

We start from the QED Lagrangian

LQED “ ´
1
4FµνF

µν ´
λ

2 pBµA
µq

2
` ψ

`

i{B ´m0
˘

ψ ´ eAµψγ
µψ. (657)

Herein, we have already introduced a gauge-fixing term with gauge parameter λ. It is an important
property of a gauge theory that physical results cannot depend on the gauge parameter (as long
as one has chosen an admissible gauge condition) and thus one can cross-check calculations by
checking that any dependence on λ drops out in physical processes.

9.1.1 Photon propagator

To derive the photon propagator, we take advantage of the path integral for gauge fields, where

Zrjs “

ż

DAµ eiS`i
ş

d4x jµA
µ

, (658)

and
S “

ż

d4x

ˆ

´
1
4FµνF

µν ´
λ

2 pBµA
µq

2
˙

. (659)

When calculating the photon propagator, we can ignore the fermion fields, which is why we have
not written them out above.
We first perform the Aµ-integral in Zrjs, because the exponential is quadratic in Aµ and so we can
do the integral by “completing the square” and doing the Gaussian integral. From the resulting
expression, we can take derivations with respect to jµ and use that, just like for the scalar field,

xTAχpxqAλpyqy “
p´iq2

Zr0s

δ

δjχpxq

δ

δjλpyq
Zrjs

ˇ

ˇ

ˇ

ˇ

j“0
(660)

where we are dividing by Zr0s to take care f the fact that Zrjs is not properly normalized.
We use
ż

d4x

ˆ

´
1
4FµνF

µν ´
λ

2 pBµA
µq

2
˙

“

ż

d4x

ˆ

´
1
2BµAνBµAν `

1
2BµAνBνAµ ´

λ

2 BµA
µBνA

ν

˙

(661)

“

ż

d4x Aµ

ˆ

`
1
2B2ηµν ´

p1 ´ λq

2 BµBν
˙

Aν (662)

This implies that

“ñ iS ` i

ż

d4x jµA
µ “ i

ż

d4x

ˆ

Aµ
2

“

B2ηµν ´ p1 ´ λqBµBν
‰

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“:pG´1qµν

Aν ` jµA
µ

˙

(663)
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“ i

ż

d4x

ˆ

1
2 pAµ ` pGµχJ

χqq
`

G´1˘µν`Aν `Gνλj
λ
˘

´
1
2JµG

µνjν

˙

.

(664)

Next, we shift the integration variable in the path integral, Aµ `Gµχj
χ Ñ Aµ and have

Zrjs “

ż

DAµ ei
ş

d4x 1
2AµpG´1

q
µνAν ´ i

2
ş

d4x jµG
µνjν . (665)

We can now perform the A integral, but don’t even have to in order to calculate xTAχpxqAλpyqy,
because the part dependent on jµ n longer depends on Aµ and can be pulled out of the integral.
Thus

xTAχpxqAλpyqy “
p´iq2

Zr0s

δ

δjχpxq

δ

δjλpyq
Zrjs

ˇ

ˇ

ˇ

ˇ

j“0
(666)

“ p´iq2 δ

δjχpxq

δ

δjλpyq
e´ i

2
ş

d4z jµpzqGµνjν pzq

ˇ

ˇ

ˇ

ˇ

j“0
(667)

“ p´iq2
ˆ

´i

2

˙

¨ 2Gχλpx´ yq (668)

“ i
`

B2ηχλ ´ p1 ´ λqBχBλ
˘´1

. (669)

It remains for us to invert the matrix B2ηχλ ´ p1 ´λqBχBλ. Because we will be using the Feynman
rules in momentum space, we rewrite this matrix in momentum space, where each Bµ is substituted
by an ipµ. (Alternatively, we can consider the correlator directly in momentum space and write
@

TÃχppqÃλp´pq
D

and Fourier transform Aµ and jµ in the path integral.)

We have
G´1
µν ppq “ i

`

p2ηµν ´ pµpνp1 ´ λq
˘

. (670)

To find the inverse Gµνppq explicitly, we make an ansatz

Gµνppq “
1
p2 pa ηµν ` b pµpνq, (671)

with a and b constant that are to be determined. Because ηµν and pµpν are the only Lorentz-
covariant 2-tensors we have available, we include them in our ansatz.
We require

pG´1qµνG
νχ “ δ χ

µ (672)

and have

i
`

p2ηµν ´ pµpνp1 ´ λq
˘ 1
p2 pa ηνχ ` b pνpχq

!
“ δ χ

µ (673)

ðñ ip2ηµν
1
p2 aη

νχ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
aδ χ

µ

´ ipµpνp1 ´ λq
1
p2 p

νpχb

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ipµpχp1´λqb

´ ipµpνp1 ´ λq
i

p2 aη
νχ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i

pµpχ

p2 p1´λqa

` ip2ηµν
1
p2 bp

νpχ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ibpµpχ

!
“ δ χ

µ (674)

“ñ a “ ´i (675)
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´�ip1 ´ λqb´ �ip1 ´ λq
a

p2 ` �ib
!

“ 0 (676)

bp1 ´ p1 ´ λqq “ p1 ´ λq
p´iq

p2 pusing a “ ´iq (677)

b “
1 ´ λ

λ

p´iq

p2 (678)

“ñ Gµνpp2q “
´i

p2

ˆ

ηµν `
p1 ´ λq

λ

pµpν
p2

˙

“ xTAµppqAνp´pqy . (679)

For the Feynman propagator, we of course have to account for the iε-prescription, which we did
not do above, so we have

GFµνpp2q “
´i

p2 ` iε

ˆ

ηµν `
p1 ´ λq

λ

pµpν
p2

˙

. (680)

We see that Feynman gauge (λ “ 1) is a particularly simple choice.

9.1.2 Fermion propagator

The Feynman propagator for fermions is

SF px´ yq “
@

Tψpxqψpyq
D

, (681)

while xTψpxqψpyqy “ 0 “
@

Tψpxqψpyq
D

. We can evaluate, given

ψpxq “
ÿ

s

ż

d3p

p2πq3
1

2ωp⃗

´

aspp⃗quspp⃗qe´ipx ` b:
spp⃗qvspp⃗qeipx

¯

(682)

ψpxq “
ÿ

s

ż

d3p

p2πq3
1

2ωp⃗

´

bspp⃗qv̄spp⃗qe´ipx ` a:
spp⃗qūspp⃗qeipx

¯

, (683)

SF px´ yq “ Θpx0 ´ y0q

ż

d3p

p2πq3
1

2ωp⃗
`

{p`m0
˘

e´ippx´yq (684)

´ Θpy0 ´ x0q

ż

d3p

p2πq3
1

2ωp⃗
`

{p´m0
˘

eippx´yq (685)

“
`

i{Bx ´m0
˘

DF px´ y,m0q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Feynman propagator
of the scalar theory

(686)

In this derivation, we used the relations
ř

s usppqūsppq “ {p`m0 and
ř

s vsppqv̄sppq “ {p´m0.
“ñ We already know the representation as an integral over

ş

d4p as well as the representation in
momentum space!
We have

SF px´ yq “

ż

d4p

p2πq4
ip{p`m0q

p2 ´m2
0 ` iε

e´ippx´yq (687)

and in momentum space,

SF ppq “
ip{p`m0q

p2 ´m2
0 ` iε

. (688)

9.1.3 Feynman rules for QED in momentum space

To compute the scattering amplitude iMfi for a given process, we draw all corresponding, fully
connected, amputated Feynman diagrams to the given order in the coupling constant e and read
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off the expression for iMfi by:

• each interaction vertex has the form

fermion

antifermion photon

and carries a factor ´ieγµ.

Note: the vertex can also be drawn like this

, (689)

so that both fermionic lines point in the same direction. The arrow follows the flow of the
charge, with an arrow pointing to the right denoting a fermion, and an arrow pointing to the
left denoting an antifermion, with opposite charge.

• each internal photon line carries a factor

´iηµν

p2 ` iε
pwhen we work in Feynman gaugeq (690)

and is drawn as µ ν

• each internal fermion line is drawn as and carries a factor

ip{p`m0q

p2 ´m2
0 ` iε

. (691)

• we impose momentum conservation at each vertex.

• we integrate over all remaining, undetermined, internal momenta with a factor
ş

d4p
p2πq4

• each ingoing photon of polarization λ carries a factor

ϵµ pλqpp⃗qZ
1{2
A , (692)

each outgoing photon a factor ϵµ pλqpp⃗qZ
1{2
A .

´

We allow for complex polarization vectors to describe circular polarization,

ϵµ˘pp⃗q “ ˘
1

?
2

´

ϵµ p1qpp⃗q ˘ iϵµ p2qpp⃗q

¯

.
¯

(693)

• each ingoing fermion with spin s carries a factor uspp⃗qZ
1{2
e ,

• each ingoing antifermion with spin s carries a factor vspp⃗qZ
1{2
e ,
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• each outgoing fermion with spin s carries a factor uspp⃗qZ
1{2
e ,

• each outgoing antifermion with spin s carries a factor vspp⃗qZ
1{2
e .

• Diagrams may carry overall signs due to the anticommuting nature of fermions.

The association of fermions with the u-spinors and antifermions with the v-spinors comes from the
consideration of the electric charge, i.e., the conserved charge associated with the Up1q symmetry
of the QED Lagrangian. We have that the particles created by a: are fermions and the particles
created by b: are the antifermions, because they create particles with opposite charge. Through
the LSZ-formalism, the a-operators are associated with the u-spinors and the b-operators with the
v-spinors. The propagator shows an example that we associate the outgoing particles with ψ̄ and
the ingoing ones with ψ, which explains the association of ingoing and outgoing with barred and
unbarred u’s and v’s.
Example: Electron-electron scattering, i.e., e´e´ Ñ e´e´:

Mini-Exercise 31. What are the corresponding two tree-level diagrams (i.e., diagrams with-
out internal loops)?

Mini-Exercise 32. What is the expression for the amplitude?
Note the following rule: If two diagrams are related to each other by the crossing of a fermion
line, they have a relative minus sign. (The overall sign drops out of the cross-section, which
only depends on |iMfi|

2, so it is enough to know the relative sign.)

9.2 Cross-section for e`e´ Ñ µ`µ´

As an example for the full calculation of a tree-level diagram in QED, we consider e`e´ Ñ µ`µ´.
There is only a single Feynman diagram that contributes, namely

p

p1

k

k1

q

e´

e`

µ´

µ`

(694)

iM “ pieq2vs1 pp1qγµusppq
p´iηµνq

q2 ` iε
urpkqγνvr1 pk1q, (695)

where q “ p` p1 “ k ` k1. Thus

iM “
ie2

q2 vs1 pp1qγµusppqurpkqγµvr1 pk1q. (696)

Next, we have to decide whether or not we are interested in a situation where the external spins
are fixed. Often, one considers an unpolarized initial state, so that one averages over all spins in
the initial state. Similarly, if one is not interested in distinguishing different values of the spin in
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the final state, one sums over all spins in the final state and thus considers

1
2
ÿ

s±
average

1
2
ÿ

s1

ÿ

r

ÿ

r1

|iM|
2
. (697)

Then we can write

1
2
ÿ

s

1
2
ÿ

s1

ÿ

r

ÿ

r1

|iM|
2

“
1
4
ÿ

s,s1

r,r1

ie2

q2 ¨
p´ie2q

q2

`

vs1 pp1qγµusppq
˘`

urpkqγµvr1 pk1q
˘

¨
`

vs1 pp1qγνusppq
˘˚`

urpkqγνvr1 pk1q
˘˚
. (698)

and use that (for pγνq
:
`

γ0˘:
“ γ0γν cf. discussion above Eq. (375))

pvs1γνusq
˚

“ u:
s pγνq

:
`

γ0˘:

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“γ0γν

vs1 “ usγ
νvs1 . (699)

We then have

1
2
ÿ

s

1
2
ÿ

s1

ÿ

r

ÿ

r1

|iM|
2

“
1
4
ÿ

s,s1

r,r1

e4

q4

`

vs1 pp1qγµusppq
˘

1

`

urpkqγµvr1 pk1q
˘

2

`

usppqγνvs1 pp1q
˘

3

`

vr1 pk1qγνurpkq
˘

4
. (700)

In the next step, we will make use of the completeness relation

ÿ

s

uasppqu bs ppq “ {p
ab `me1

ab (701)
ÿ

s

vas ppq v bs ppq “ {p
ab ´me1

ab, (702)

where me is the electron mass, because ur and vs denote e´ and e`. To do so, it is useful to make
the Dirac indices explicit in |iM|

2. We note that the terms within the brackets p q always have
fully contracted indices. Thus, if we, e.g., pick up all spinors with spin value s, we have

ÿ

s

´

v as1 pp1qpγµq
ab
ubsppq

¯´

u cs ppqpγνq
cd
vds1 pp1q

¯

“
`

{p
bc `m1bc

˘

¨ pγµq
ab
v as1 pp1qpγνq

cd
vds1 pp1q (703)

and thus

1
4

ÿ

spins
|iM|

2
“

1
4
e4

q4 tr
´

p{p
1 ´meqγ

µp{p`meqγ
ν
¯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
from term 1 and 3

¨ tr
´

p{k
1
`mµqγµp{k ´mµqγν

¯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
from term 2 and 4

, (704)

where the trace is in Dirac indices and we denote the electron mass by me and the muon-mass
by mµ.

We are now left with a trace over Dirac indices in gamma-matrices, for which there is a list of
trace identities that can be proven. We provide the full list here, because this “trace technology”
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is relevant for all diagrams in QED (given that there are always gamma matrices on the vertices
and also on the internal fermion propagator). (See, e.g., ch. 47 in Srednicki for literature on this.)

• tr γµ “ 0, because

tr γµ “ tr
`

γ5˘2

²
“1

γµ “ ´ tr γ5γµγ5 “ ´ tr
`

γ5˘2
γµ “ñ tr γµ “ 0, (705)

where we used
␣

γµ, γ5( “ 0 in the second step and the cyclicity of the trace in the third step:

tr γ5 γµγ5 “ tr
`

γ5˘2
γµ pcyclicityq (706)

• tr γµ1 . . . γµn “ 0 for n odd, because

tr γµ1 . . . γµn “ tr
`

γ5˘2
γµ1 . . . γµn “ ´ tr γ5γµ1 . . . γµnγ5 (707)

“ ´ tr
`

γ5˘2
γµ1 . . . γµn “ ´ tr γµ1 . . . γµn , (708)

where we again used
␣

γµ, γ5( “ 0 in the second and the cyclicity of the trace in the third
step.

• tr γµγν “ 4ηµν , because

tr γµγν “ tr p2ηµν1 ´ γµγνq “ 2ηµν tr1°
“4

´ tr γνγµ
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
“tr γµγν

pcyclicityq

(709)

• tr γµγνγργσ “ 4pηµνηρσ ´ ηµρηνσ ` ηµσηνρq, because

tr γµγνγργσ “ tr ptγµ, γνuγργσ ´ γνtγµ, γρuγσ ` γνγρtγµ, γσu ´ γνγργσγµq (710)

“ tr 2ηµν1γργσ ´ tr γν2ηµρ1γσ ` γνγρ2ηµσ1 ´ tr γµγνγργσ, (711)

where we used the cyclicity of the trace in the last term, and where

tr 2ηµν1γργσ “ 2ηµν tr γργσ “ 8ηµνηρσ (712)

etc...

• tr γ5 “ 0, because

tr γ5 “ tr γ5 `γ0˘2

²
“1

“ ´ tr γ0γ5γ0 “ ´ tr
`

γ0˘2

²
“1

γ5 “ ´ tr γ5, (713)

where we used
␣

γ5, γ0( “ 0 in the second and the cyclicity of the trace in the third step.

• tr γ5γµ “ 0 “ tr γ5γµγνγχ, because γ5 “ iγ0γ1γ2γ3 and because trpodd #γ1sq “ 0, as we
have already shown.

• tr γ5γµγν “ 0, because in 4D we can always choose and index α ‰ µ, ν with tγµ, γαu “

0 “ tγν , γαu. As before,
␣

γµ, γ5( “
␣

γν , γ5( “
␣

γα, γ5( “ 0. Further, we know that
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γαγα “ ηαα “ δαα “ 4 in 4D. Thus

tr γ5γµγν “
1
4 tr γ5γµγν γαγα²

4

(714)

“
1
4 p´1q3 tr γαγ5γµγνγα (715)

“ ´
1
4 tr γαγα²

4

γ5γµγν (716)

“ ´ tr γ5γµγν , (717)

where we used the cyclicity of the trace in the third step.

• tr γ5γµγνγκγλ “ ´4iϵµνκλ, because

tr γ5γ0γ1γ2γ3 “ ´i tr
`

γ5˘2

²
“1

“ ´4i (718)

and because the overall result must be totally antisymmetric, when we use that tr γ5γµγν “ 0.

• γµγνγµ “ ´2γν (note that this is a matrix-identity, not a trace identity), because

γµγνγµ “ tγµ, γνuγµ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2ηµνγµ

´γν γµγµ
²

4

(719)

“ ´2γν . (720)

• γµγργσγµ “ 4ηρσ, because

γµγργσγµ “ tγµ, γρu
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

2ηµρ

γσγµ ´ γρtγµ, γσu
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2ηµσ

γµ ` γργσ γµγµ
²

4

(721)

“ 2γσγρ ´ 2γργσ ` 4γργσ (722)

“ 2tγσ, γρu “ 4ηρσ. (723)

• γµγργσγκγµ “ ´2γκγσγρ (note the reversal in the order of the open indices), because

γµγργσγκγµ “ tγµ, γρuγσγκγµ ´ γρtγµ, γσuγκγµ ` γργσtγµ, γκuγµ ´ γργσγκγµγµ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

4γργσγκ

(724)

“ 2γσγκγρ ´ 2γργκγσ `2γργσγκ ´ 4γργσγκ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

´2γργσγκ

(725)

“ 2tγσ, γκuγρ ´ 2γκγσγρ ´ 2γρtγκ, γσu (726)

“ ´2γκγσγρ. (727)

Of these many identities, we only need:

tr
`

p{p
1 ´meqγ

µp{p`meqγ
ν
˘

“ p1
κpλ tr

`

γκγµγλγν
˘

´m2
e trpγµγνq (728)

“ p1
κpλ

`

4ηκµηλν ´ 4ηκληµν ` 4ηκνηµλ
˘

´ 4m2
eη
µν (729)
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“ 4
`

p1µpν ´ p1 ¨ p ηµν ` p1νpµ
˘

´ 4m2
eη
µν . (730)

Mini-Exercise 33. What is tr
´

p{k
1
`mµqγµp{k ´mµqγν

¯

?

Thus:

1
4

ÿ

spins
|iM|

2

“
1
4
e4

q4 p4 ¨ 4q ¨
`

p1µpν ` p1νpµ ´ p1 ¨ p ηµν ´ 4m2
eη
µν
˘

¨
`

k1
µkν ` k1

νkµ ´ k1 ¨ k ηµν ´m2
µηµν

˘

. (731)

Note: m2
e

m2
µ

«
p0.5 MeVq

2

p100 MeVq2 «
` 1

200
˘2, so we can neglect the me-term.

1
4

ÿ

spins
|iM|

2
“ 4e

4

q4

´

p1 ¨ k1 p ¨ k ` p1 ¨ k p ¨ k1 ´ p1 ¨ p k1 ¨ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

´4m2
µp

1 ¨ p

` p1 ¨ k p ¨ k1 ` p1 ¨ k1 p ¨ k ´ p1 ¨ p k1 ¨ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

´4m2
µp

1 ¨ p

´ p1 ¨ p k1 ¨ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

´ p1 ¨ p k1 ¨ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

` 4p1 ¨ p k1 ¨ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

`16mµ2 p1 ¨ p
¯

(732)

“ 4e
4

q4

`

2p1 ¨ k1 p ¨ k ` 2p1 ¨ k p ¨ k1 ` 8m2
µ p

1 ¨ p
˘

. (733)

For the rest of the calculation, we actually neglect both masses, i.e., we assume that the center-of-
mass energy is much higher then mµ.
2-2-scattering processes can be expressed in terms of the three Mandelstam variables:

s “ pp1 ` pq2 pwhich equals the square of the center-of-mass energyq (734)

t “ pp´ kq2 and (735)

u “ pp´ k1q2. (736)

(For 2-2-scattering of 4 identical particles and a mediator of the interaction coupling through a
3-vertex, there is a diagram for each Mandelstam variable to flow through the internal propagator:

p

k

p1

k1

p` p1

s-channel

p

p1

k

k1

p´ k

t-channel

p

p1

k

k1

p´ k1

u-channel

Because the QED vertex is ψγµψAµ, there is no process with all three diagrams, e´e´ Ñ e´e´

only receives a contribution from t- and u channel.)
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For the case m2
e “ 0 “ m2

µ, which is the approximation that we work with, p2 “ 0 “ p12 “ k2 “ k12

and thus

s “ 2p ¨ p1 “ 2k ¨ k1 (737)

t “ ´2p ¨ k “ ´2p1 ¨ k1 (738)

u “ ´2p ¨ k1 “ ´2p1 ¨ k. (739)

In the center-of-mass frame, these scalar products can all be expressed through the scattering
angle Θ,

p⃗ p⃗ 1

k⃗

k⃗ 1

Θ

t “ ´2k ¨ p “ ´2pk0p0 ´ k⃗ ¨ p⃗q “ ´2k0p0p1 ´ cos Θq “ ´
s

2 p1 ´ cos Θq (740)

u “ ´s´ t “ ´
s

2 p1 ` cos Θq (741)

We have that

1
4

ÿ

spins
|iM|

2
“

8e4

s2

˜

ˆ

´t

2

˙2
`

ˆ

´u

2

˙2
¸

(742)

“
2e4

s2 pt2 ` u2q (743)

“
2e4

s2

ˆ

s2

4 p1 ´ cos Θq2 `
s2

4 p1 ` cos Θq

˙

(744)

“
e4

2
`

1 ´����2 cos Θ ` pcos Θq2 ` 1 `����2 cos Θ ` pcos Θq2˘ (745)

“ e4`1 ` pcos Θq2˘. (746)

To arrive at the differential cross-section (see our expression for dσ in Eq. (656)), we have to di-
vide by 1

4p0k0|v⃗p⃗ ´ v⃗
k⃗|

Ñ 1
2s

1
2c (highly relativistic case, i.e., negligible masses), where we used that

v⃗p⃗ “ ´v⃗k⃗ « c in the relativistic case. We will of course continue to work with c “ 1.

We also have the factor p2πq4 ş d3k
p2πq3

ş

d3k1

p2πq3
1

2k0
1

2k10 δ4pp` p1 ´ k´ k1q, where we are aiming to leave
the angular distribution non-integrated and thus write d3k “ d|⃗k| |⃗k|2 dΩ, with dΩ “ dΘ dφ sin Θ
with the scattering angle Θ, which we get by aligning our coordinate system appropriately.
We perform the integration over k1 and use k10 “ |⃗k1|, which is justified for m2

µ ! |⃗k1|2; we also
have k⃗1 “ ´k⃗, which holds in the center-of-mass frame.
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Thus

p2πq4
ż

d3k

p2πq3
d3k1

p2πq3
1

2k0
1

2k10
δ4pp` p1

²?
s

´k ´ k1q “

ż

d3k

p2πq3
1

4|⃗k|2
δp

?
s´ 2|⃗k|q (747)

“

ż

d|⃗k|

p2πq2
�
�|⃗k|2

4��|⃗k|2
dΩ δ4p

?
s´ 2|⃗k|q (748)

“
1

32π2 dΩ (749)

“ñ
dσ

dΩ “
1
4s

1
32π2 e

4`1 ` pcos Θq2˘. (750)
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