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Exercise 1: Quantum fields in an expanding universe

Motivation: In this first exercise, we’ll follow how the vacuum state of a scalar evolves in a toy model of an
expanding universe. Even though the setup is simple, it already reveals a key feature of quantum fields in curved
spacetime: the vacuum isn’t as empty as it seems.

Consider a real massive scalar field χ (minimally coupled) in an expanding universe. Its classical
action is

S =
1

2

∫
d4x

(
χ′

2 − (∂iχ)2 −m2
effχ

2
)
, (1.1)

where i denotes spatial indices and prime corresponds to derivative with respect to conformal
time. The effective mass m2

eff is written as

m2
eff = m2a2 − a′′

a
, (1.2)

with a, the scale factor. Assume that m2
eff is given by

m2
eff(η) =

{
m2

0 , η < 0 and η > η1 ,
−m2

0 , 0 < η < η1 ,
(1.3)

with m0 a constant.

(a) Solve the equations of motion for χ.

(b) Construct the early (“in”) and late (“out”) time vacuum states.

(c) Prove that in the “out” region (η > η1), the state |0in〉 (the vacuum in the “in” region) contains
particles. In other words, if we initially start in the vacuum the background evolution has
created particles.

(d) Show that the mean particle number density in a mode k is given by

nk =
m4

0

|k4 −m4
0|

∣∣∣sin(η1

√
k2 −m2

0

) ∣∣∣2. (1.4)

Sanity check: What happens in the limit η1 → 0? Why is this the result we expect?

(e) Discuss the regimes k � m0 and k � m0. What is the physical meaning of these limits?

Exercise 2: Bogolyubov transformations

Motivation: We’ve seen that one person’s vacuum can be filled with particles from another person’s point of view.
Now we derive general rules that relate the vacua of different observers.



Given a set of mode functions vk(η) (with conformal time η and k = |k|), a scalar field on a
cosmological background can be expanded as

χ =
1√
2

∫
dk3

(2π)3/2

(
v∗kake

ikx + vka
†
ke
−ikx

)
, (2.1)

where
[ak, a

†
k′ ] = δ(3)(k′ − k). (2.2)

Let us define a new set of mode functions as a linear combination

uk = αkvk + βkv
∗
k. (2.3)

The numbers αk and βk are called Bogolyubov coefficients. They are related as

|αk|2 − |βk|2 = 1. (2.4)

Given the new set of mode functions, we can equivalently expand the scalar as

χ =
1√
2

∫
dk3

(2π)3/2

(
ukbke

ikx + u∗kb
†
ke
−ikx

)
, (2.5)

where again
[bk, b

†
k′ ] = δ(3)(k′ − k). (2.6)

Then, we can express the different classes of creation and anihilation operators as linear combi-
nations, e.g.

bk = αkak − βka†−k (2.7)

In class, you have derived the average particle number density of modes associated with the
operator a† in the b-vacuum. Now, we go a step further and explicitly express the b-vacuum
state in terms of creation and anihilation operators of the state a acting on the a-vacuum. The
b-vacuum state for a pair of modes (k,−k) satisfies

bk|0(b)
k,−k〉 = b−k|0(b)

k,−k〉 = 0. (2.8)

(a) Expand the b-vacuum in terms of a-particle states.

(b) Use the properties of |0(b)
k,−k〉 to obtain the expansion coefficients.

(c) Normalize the resulting state. You should obtain the result

|0(b)
k,−k〉 =

1

|αk|
e
βk
αk
a†ka
†
−k |0(a)

k,−k〉. (2.9)

(d) Write down the full b-vacuum state in terms of the mode-specific |0(b)
k,−k〉.

(e) Let’s have a closer look at the expansion. What kind of state is the b-vacuum in terms of
a-particle states?



Exercise 3: Instantaneous vacuum

Motivation: Every mode function allows to construct a different vacuum. What could be a sensible definition of
vacuum then? Let’s find out!

Ordinarily, we define the vacuum as the lowest-energy state. In cosmology, however, the Hamilto-
nian is time dependent. Energy is not conserved. This creates particles. Thus, the lowest-energy
state at one time (the instantaneous vacuum), may not be the lowest-energy state at a different
time. Let’s see, how this comes about.
As above consider a real massive scalar field, whose dynamics are characterized by the action
given in Eq. (1.1). This results in the Hamiltonian

H =
1

2

∫
x

(
π2 + (∂iχ)2 +m2

effχ
2
)
, (3.1)

with the momentum conjugate π. Assume that the field possesses a mode expansion as in Eq. (2.1).

(a) Express the Hamiltonian in terms of creation and anihilation operators. You should obtain
something of the form

H =
1

4

∫
d3k

[
aka−kF

∗
k + a†ka

†
−kFk + (2a†kak + δ(3)(0))Ek

]
(3.2)

for some Ek, Fk.

(b) Compute the mean energy density in the a-vacuum.

(c) Assuming that ω2
k = k2+m2

eff > 0, find initial conditions for the mode function that minimize
the mean energy density at conformal time η0. (Hint: Normalize the mode functions.)
What is the corresponding Hamiltonian at conformal time η0? You should obtain that the
Hamiltonian is diagonal in this case.

(d) Compute the initial conditions for the mode function after an infinitesimal time shift, i.e.at
conformal time η0 + δη. Compare these initial conditions to the ones derived in the previous
exercise. How do we interpret this result? (Hint: Have in mind Ex. 2.)

(e) Imagine that you could find a vacuum state which diagonalizes the Hamiltonian at all times.
Which equation would the mode functions have to satisfy? Is this equation compatible with
the equations of motion?

In specific situations, it can happen that the lowest-energy state at one time η0 amounts to an
infinite number density at a different time η1, even if the geometry changes slowly compared to the
time difference that is characteristic of the problem one would like to answer (i.e.adiabatically).
This casts serious doubts on the physical interpretation of the instantaneous vacuum.
However, adiabatic evolution allows us to (at least approximately) define a different vacuum state
with interesting properties: The adiabatic vacuum. If the energy density is changing slowly during
the considered time interval, the equations of motion allow for the approximate solutiona

vWKB
k (η) =

e
i
∫ η
η0
ωk(η′)dη′

√
ωk

. (3.3)



We can define the adiabatic vacuum |0ad(η0)〉 at a time η0 by finding exact mode functions which
satisfy the initial conditions

vk(η0) = vWKB
k (η0), v′k(η0) = vWKB′

k (η0), (3.4)

and constructing the vacua relative to the corresponding anihilation operator.

(f) Quantify how adiabatic a general background evolution yielding ωk(η) is. Which condi-
tion should an adiabatically evolving background satisfy if the quantum-field evolution is
considered in a finite-time interval ∆η = η1 − η0?

(g) Compute the energy density of the adiabatic vacuum in general. Is it minimal?
aThis approximation is called WKB (Wentzel–Kramers–Brillouin) approximation, a standard method in quan-

tum mechanics in general.


